
Rapid Prototyping of Application-Specific Signal Processors (RASSP)

The Configuration Management Model for the RASSP System
Version 3

Generated By: B. Kalathil (July 1994)
Modified By:     B. Kalathil (September 1994 - Version 2)
Modified By:     D. Blanchard (August 1996 - Version 3)

Lockheed Martin
Advanced Technology Laboratories
Bldg. A&E 2W
1 Federal Street
Camden, NJ 08102

Date:
June 23, 1996

Table Of Contents

1 Introduction

2 CM Process Example



3 Configuration Management in the RASSP System

     3 .1  Shared and Private Workspaces

     3 .2  Data Object Versioning

4 RASSP CM Mechanics

     4 .1  Introduction

     4 .2  Workspace Functions

4.2.1 Creating a Workspace 
4.2.2 Accessing an arbitrary workspace 
4.2.3 Accessing the Child Workspace 
4.2.4 Accessing the Parent Workspace 
4.2.5 Making a workspace visible 

     4 .3  Version Management Functions

4.3.1 Creating a Configuration 
4.3.2 Inserting Data objects into a configuration 
4.3.3 Checkout 
4.3.4 Checkin 
4.3.5 Accessing Child Versions 
4.3.6 Accessing Parent Version 
4.3.7 Naming Versions 
4.3.8 Retrieving a named version 

5 Implementation Strategy

The Configuration Management Model for the RASSP System

1 Introduction

The Rapid Prototyping of Application-Specific Signal Processors (RASSP) is an Advanced Research Projects
Agency (ARPA)/Tri-Service program aimed at dramatically improving the process of design, manufacture,
test and procurement of digital signal processors. The RASSP program will deliver an integrated system called
the RASSP system, which integrates the CAD tools used in the RASSP design process under a framework
referred to as the enterprise framework. An enterprise framework provides the facilities and services
necessary to integrate the automated processes of an enterprise. In the RASSP system the enterprise
framework provides support for workflow management, design data management, library management,
computer-supported collaborative work and remote tool access. The workflow management subsystem of the
RASSP enterprise system enables a RASSP system administrator to model and enforce a particular design
methodology for a project. The data management subsystem of the enterprise framework provides facilities for
configuration managing, and controlling access to design data files that may reside at various sites in a



computer network. The library management subsystem provides facilities for cataloging, classifying and
storing reusable design components; as well as mechanisms for searching for reusable components. 

Configuration Management (CM) in the RASSP system is the management of the versioning of design
objects. It includes creating, approving and releasing a new version of a design object; organizing the versions
of a design object; and assembling compatible configurations of versions of design objects to form a release of
a product. Different CAD vendor tools provide different mechanisms to support the configuration management
process. A mechanism  is an individual function of a system. The mechanisms provided by the tools not only
vary in scope, but also in their semantics. In an integrated product development environment which involves
several vendor tools, such as RASSP, diverse and incompatible configuration management mechanisms
across tools can lead to the inefficiencies in the design process listed below:

• There is no common way of handling the configuration management of a product
throughout its life cycle

• The design engineers working on a project have to learn several different paradigms of CM

• The CM data on a product generated by one tool cannot be used by another tool

We propose in this document a common model of configuration management that may be adopted by the
RASSP enterprise framework tools and the CAD tools. This model provides for the management of the
various versions of the design objects that are created and manipulated during the process of the design of a
product. The model does not cater to the version management of reusable library components that are created
outside of the design process. The release management of reusable library components is described in [Martin
Marietta, 1994]. We have specified a common minimal set of configuration management mechanisms that
need to be provided by the tools to support the proposed CM model. To facilitate the exchange of CM data
between tools the CM data generated by each tool will be modeled using the CM conformance class of the
STEP (Standard for the Exchange of Product Model Data) standard AP203 [ISO, 1993]. An important
criterion we have followed in the development of the model and the mechanisms is that they should be generic
enough to allow an organization to adopt any CM process it chooses to. An example CM process is described
in section 2.

The RASSP enterprise framework tools that create and manipulate data during the process of design include
file managers such as Intergraph's Electronic Desktop Manager (EDM), Intergraph's Network File Manager
(NFM); STEP database tools, and CAD frameworks such as the Mentor Falcon Framework. The CAD tools
include tools used in the various stages of the RASSP design process, such as system design, architecture
design, simulation and hardware design. Examples include tools such as RTM, RDD100, Matlab, SPW, JRS,
GEDAE, Ptolemy, Omniview, Synopsis and Mentor hardware design tools.

Apart from the managing of versions of design objects, the CM process of an organization includes generating
reports such as problem reports, engineering change proposals, specification change notices and notices of
revision. The generation and management of these reports will be done external to the CAD systems, using a
document management system such as Interleaf [Interleaf, 1993].

In the next section we describe an example CM process in an organization. In section 3 we propose a common
model of configuration management for the RASSP system. In section 4 we describe a common set of CM
mechanisms needed for supporting the proposed CM model. We discuss the implementation strategy and
propose a schedule for implementation in section 5.

2 An Example CM Process

Figure 1 shows an example CM process adopted by an organization. We have used an IDEF3 notation to
represent the workflow. The boxes represent individual activities in a process, and the links between the
activities represent precedence relationships between activities. The links are annotated with information about
the data that flows between two activities -- the state of the data and the type of data separated by a '*'. A
junction box, represented by a box with a vertical line parallel to the left edge and an 'X' within the box, is



used to model alternate paths within a workflow. The arrows coming into the bottom edge of an activity box
indicate the mechanisms that are involved in the activity, usually the job classification of the individual(s)
performing the activity.



3. Configuration Management in the RASSP System

3.1 Shared and Private Workspaces

Workspaces are partitions of the design object space to allow designers working on the various parts of a
project to selectively make their design objects visible to others in the project [Cattell, 1991]. Workspaces are
organized in a hierarchical fashion as shown in figure 2, with a global workspace at the root of the hierarchy,
shared workspaces as the intermediate nodes in the hierarchy, and private workspaces as the leaves in the
hierarchy. The links in a workspace hierarchy represent a parent-child relationship between the linked
workspaces. For example, in figure 2 the workspace "Private WS2" is a child of the workspace "Shared
WS1" (and the workspace "Shared WS1" is the parent of the workspace "Private WS2"). 

Workspaces provide for varying levels of sharing of data objects. A user of a workspace has visibility to all
the objects residing in the workspace and the objects residing in the ancestor workspaces of the workspace.
Thus all users of the database have visibility to data objects residing in the global workspace.

3.2 Data Object Versioning

We propose a data object versioning scheme where related data objects that evolve at the same time are



grouped together as configurations, and versioning is managed at the level of configurations. New
configuration objects are typically created in a private workspace, at which point the configuration is
considered a transient version of the configuration. A transient version may be updated or deleted. Once the
transient version of a configuration reaches a state of maturity suitable for sharing with other designers in a
project, it is promoted to a working version of the configuration, by checking in the configuration from the
private workspace where it resides, to its parent workspace. A working version may not be updated but may
be deleted. Working versions of configurations that are considered to represent the final state of design are
promoted to released versions by checking in them to the global workspace. A released version may not be
updated nor deleted. We use the notation statei > statej to denote that statei is a higher state that statej. Thus
released > working > transient.

The operations Baseline and Revise are special cases of checkin and checkout applied to the Global
workspace. 

Workspace State Read Delete Update Approve Baseline Revise

Global Released Yes No No No No Yes

Shared
Approved Yes Yes No No Yes No

Working Yes Yes No Yes No No

Private Transient Yes Yes Yes No No No

Figure 3. Permissible operations for workspaces

A new transient version cj  of a configuration c, may be created by checking out an existing version ci
residing in a workspace wm to a workspace wn that is a direct or indirect descendent of wm. The source
version ci may be in one of the three states prior to checkout -- released, working or transient. If the state of ci
prior to checkout is released or working, the state of ci remains unchanged after checkout. However, if the
state of ci is transient prior to the checkout, ci is promoted by the system to a working version as part of the
checkout operation. 

The versions of a configuration are organized as a directed acyclic graph (DAG), as shown in figure 4, and is
commonly referred to as a version tree. The new nodes in the tree start out as a transient version and
progressively become working versions and then released versions. A version in a version tree may be deleted
only if it is a transient or a working version, and it is a leaf node in the tree. A directed link between two
versions i and j in a version tree represents the is-derived-from  relationship, i.e., version j is derived from
version i. Also, version i is said to be the parent  of version j, and version j is said to be a child  of version i.
We use the notation ci -> cj to represent the parent-child relationship between the two versions i and j of the
configuration c. 



The following rule applies to a version tree:
VT-Rule1: Given two versions ci and cj of a configuration c, such that ci -> cj, then the state of cj should be
less than or equal to the state of ci.

4. RASSP CM Mechanisms

4.1 Introduction

We propose in this section a minimal set of CM mechanisms that needs to be supported across the RASSP
enterprise framework tools. This set will provide the basis for configuration management of design data in the
different phases of the RASSP design process. The set of CM mechanisms proposed here is intended to serve
as a common minimal set; an individual CAD tool may support more than the minimal set proposed here. 

We categorize the CM mechanisms into two classes -- workspace functions and version management
functions. In the following sections we use a C-like pseudo code to describe the functions. For example,
Bar my_func (Foo a_foo);
describes a function "my_func" that takes as a parameter an object of type "Foo" and returns an object of type
"Bar". We use names starting with capital letters, such as "Workspace" to denote the type of object, and
names starting with small letters, such as "create_workspace" and "parent_workspace" to denote a function
name or a parameter name. 

Bar another_func (foo *a_foo=0);
describes a function "another_func" that takes as a parameter a pointer (denoted by the *) to an object of type
"foo". The "= 0" is a default value for the parameter if one is not provided. Thus the parameter "a_foo" is an
optional parameter for the function "another_func", while it is a required parameter for the function
"my_func".

The C-like style we are using to describe the mechanisms is for the brevity of the descriptions, and does not
have any implications as to the implementations of these functions, nor the user interface provided by the



systems to these functions.

4.2 Workspace Functions

4.2.1 Creating a workspace

Workspace *create_workspace (char *workspace_name, 
Workspace *parent_workspace=0);
Creates a child workspace of the specified parent workspace, and assigns it the supplied name. If a parent
workspace is not specified, the new workspace is made a child of the global workspace. The global
workspace is a system-created workspace that exists in every database, and has the name "global_workspace"
assigned to it.

4.2.2 Accessing an arbitrary workspace

Workspace *get_workspace (char *workspace_name);
Returns a pointer to the workspace with the specified name.

4.2.3 Accessing child workspaces

Workspace_List child_workspaces (Workspace *a_workspace);
Returns a list of pointers to child workspaces of the specified workspace.

4.2.4 Accessing the parent workspace

Workspace *parent_workspace (Workspace *a_workspace);
Returns a pointer to the parent workspace of the specified workspace.

4.2.5 Making a workspace visible

void set_current_workspace (Workspace *a_workspace);
Sets the specified workspace to be the current workspace for the application program. The application
program can access only objects that reside in the current workspace, or in the ancestor workspaces of the
current workspace.

4.3 Version Management Functions

4.3.1 Creating a configuration

Configuration *create_configuration ();
Creates a new configuration and returns a pointer to it.

4.3.2 Inserting data objects into a configuration

void insert_into_configuration (Configuration *a_configuration,
void *a_design_object);
Inserts the design object pointed to by "a_design_object" into the specified configuration.

4.3.3 Checkout

Configuration *checkout (Configuration *a_configuration, 
char *version_name=0);
Creates a new version of the configuration pointed to by "a_configuration", and makes the new version visible
in the current workspace. The new version may also be provided an optional version name. The version name



is an arbitrary name provided by the user. If the configuration pointed to by a_configuration is a transient
version, it is promoted by the system to a working version, by performing a checkin operation (see section
4.3.4), before performing the checkout. The configuration pointed to by "a_configuration" may reside in the
current workspace, or in any of the ancestor workspaces of the current workspace. This function returns a
pointer to the newly created version of the configuration.

4.3.4 Checkin

void checkin (Configuration *a_configuration);
Checks in the configuration pointed to by "a_configuration". This results in the configuration being made
visible to the parent workspace of the current workspace. If the parent workspace is the global workspace,
then the configuration is promoted to a released version, otherwise it is promoted to a working version. A
working version of a configuration that is checked in to a non global workspace is not promoted in the process
of checkin, but is made visible to the parent workspace.

4.3.5 Accessing child versions

Configuration_List child_versions 
(Configuration *a_configuration);
Returns a list of pointers to the child versions of the configuration pointed to by a_configuration.

4.3.6 Accessing the parent version

Configuration *parent_version (Configuration *a_configuration);
Returns a pointer to the parent version of the configuration pointed to by "a_configuration".

4.3.7 Naming versions

void name_version(Configuration *a_configuration, char *a_name);
Assigns the character string pointed to by "a_name" as the name of the specified
configuration.

4.3.8 Retrieving a named version

Configuration *get_named_version 
(Configuration *a_configuration, char *a_name);
Returns the version of the specified configuration that has the name pointed to by "a_name". If no such
version exists a null pointer is returned.

5 Implementation Strategy

The implementation of the CM mechanisms will be done by the individual tool vendors, both in the case of the
enterprise framework tools and the CAD tools. In the case of CAD tools, the CM model will be implemented
in one representative tool in each functional area of the RASSP design process, to demonstrate the value of the
common CM model. 

References

[Cattell, 1991] Cattell, R.G.G., Object Data Management , Massachusetts: Addison Wesley, 1991.

[Interleaf, 1993] Interleaf Inc., Getting Started with Interleaf 6 for Motif , Waltham, Massachusetts,




















