
Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

n the past decade, the unprecedented advances in VLSI
technology have stimulated great interests in developing
special purpose, parallel processor arrays to facilitate real

time digital signal processing. Parallel computing systems
such as systolic arrays [57] and wavefront arrays [59],[60]
have been extensively studied. The basic arithmetic computa-
tion of these parallel VLSI arrays has often been implemented
with a multiplication and accumulation (MAC) unit, because
these operations arise frequently in DSP algorithms. The
reduction in hardware cost also motivated the development
of more sophisticated DSP algorithms to enhance the perfor-
mance of modern digital signal processing systems. Many of
these new algorithms require the evaluation of elementary
functions, such as trigonometric, exponential, and logarithm
functions, which cannot be evaluated efficiently with MAC
based arithmetic units. Consequently, when DSP algorithms
incorporate these elementary functions, it is not unusual to
observe significant performance degradation.

On the other hand, an alternative arithmetic computing
algorithm known as CORDIC (Coordinate Rotation DIgital
Computer) has received renewed attention, as it offers a
unified iterative formulation to efficiently evaluate each of
these elementary functions. Specifically, all the evaluation
tasks in CORDIC are formulated as a rotation of a 2 x 1 vector
in various coordinate systems. By varying a few simple
parameters, the same CORDIC processor is capable of itera-
tively evaluating these elementary functions using the same
hardware within the same amount of time. This regular,
unified formulation makes the CORDIC based architecture
very appealing for implementation with pipelined VLSI array
processors.

In this context, many research efforts have been directed
to the application of CORDIC based architectures for DSP
applications 121,131,141, [181, [191,l211,l221,1231, [271, 1411,
1471,l521,l531,l631,[641 [701, l721,1741,1761,[771,1791, and
1801. The primary objective of this article is to provide a brief
survey of these recent research efforts.

We will first review the state-of-the-art of the evolution of
the CORDIC algorithm, and CORDIC processors. Then we
will survey a number of typical DSP applications suitable for
implementation with CORDIC based hardware.

CORDIC ALGORITHM AND
CORDIC BASED PROCESSOR ARRAY

CORDIC is an iterative arithmetic algorithm introduced
by Volder [81] in 1956 and later refined by Walther 1821 and
many others [I], VI, 1101, 1141, 1161, 1171, [201, [IS], 1251,
1301, [37], 1421, [44], 1451, 1401, 1751, 1771. The CORDIC
algorithm has found a wide range of applications, including
discrete transformations such as discrete Hartley transform
[1 I], discrete cosine transform (DCT) 1141, fast Fourier trans-
form (FFT) [25], [26], Chirp Z transform (CZT) [44], solving
eigenvalue and singular value problems [IS], 13 I], 1721,
digital filters [21], 1221, 1801, Toeplitz system and linear
system solvers 1471, [48],[52], 1741, 1.531, and Kalman filters
[771.

CORDIC Algorithm

The basic concept of the CORDIC computation is to
decompose the desired rotation angle into the weighted sum
of a set of predefined elementary rotation angles such that the
rotation through each of them can be accomplished with
simple shift-and-add operations. For this, we let the rotation
angle, 0, be represented as:

where the iPrh elementary rotation angle, am(i) is defined by:

In the above equations, m = 1, -1, and 0 corresponds to,
respectively, the rotation operation in a circular coordinate
system, a hyperbolic coordinate system, and a linear coor-
dinate system. The norm of a vector [x y 1' in these three
coordinate systems are defined as w. The term
{mu(i) ; 0 5 i I n - 1; } is a sequence of +Is which deter-
mines the rotation angle, and the modes of operations. The
term { s(m,i) ; 0 I i I n - 1) is a non-decreasing integer shift
sequence which is usually determined in advance.

With these definitions, the basic CORDIC algorithm can
be described as follows:

Initiation: Given x(O), y(O), z(0).
For i = 0 to n - I , Do
I* CORDIC iteration equation *I

I" Angle updating equation "I
z(i+l) = z(i) - p i a,(i)
End i-loop

I* Sca

i=U

(4)

JULY 1992

- 1

IEEE SIGNAL PROCESSING MAGAZINE

. .- n -----
17

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

Linear Rotation

(Cl
~ -~ _ _ _ _ _ _ _ _ ~ _ _ _ _ ~ _ -

I . Trajectory ofcirculur (a). linear (b), and hyberbolic (c) COR-
DIC rotutions.

The purpose of the scaling operation (Eq. 5) is to make
sure that after rotation, the final coordinate [xf y]' has the

same m-norm as the initial coordinate [x(0) ~ (0) 1'. That is,
(xf+ + m(yjl2 = x2(0) + my2(0) m = - I , or I

(For m = 0, &(n) = 1. No scaling operation is needed).
From Figure l(a)-(c), it is clear that the rotation changes

the norm of the vector. Hence this scaling operation is needed
to move the end point of the final vector back to the desired
trajectory (on the dotted line). A main research issue, to be
discussed later, is to reduce the computation overhead due to
the scaling operation.

Modes of Operations
The set of p; (A l) in the CORDIC algorithm determine

the rotation angle depending on the modes of operations. The
CORDIC algorithm can be operated in either a vector rotation
mode, or an angle accumulation mode.

In the vector rotation mode, which is also known as the
vectoring mode [82], or forward rotation mode [44], the
desired rotation angle 8 is given. The objective is to compute
the final coordinate [,y yf]'. Usually, we set z(0) = 8 at the
beginning.

After n iterations, the total angle rotated is:

Clearly, we should choose p; = sign of ~ (i) in Eq. 4 such that

after the i'h iteration, I z(i+l) I < I z(i) I . Eventually, we want
to make Iz(n)l 4 0.

For many DSP problems, 8 is known in advance. Often,
the same 8 will be used over and over. In these situations, one
may choose to evaluate Eq. 4 in advance (off line), and store
the corresponding set of p;, instead of 8, in the memory. A
particular advantage is that there will be no need to implement
the angle updating formula (Eq. 4), resulting in a one-third
cost saving of hardware.

In the angle accumulation mode, which is also known as
the rotation mode [82], Y-reduction mode [lo], or the back-
wurd rotation mode [47], the desired rotation angle, 8, is not
given. The objective is to rotate the given initial vector
[x(O) y(O)]' back to the x-axis so that the angle between them
can be accrued. For this purpose, we let z(0) = 0, and select
p; = sign of x(i) . y (i) . (In the circular rotation case, an alter-
native criterion to select pi = - sign ofy(i) will guarantee
xf> 0 regardless the sign of x(0). In summary, the selection
criteria for pi are:

(7)
sign of z(i) vector rotution mode

= { - sign of x(i) .y(i) angle accumulation mode

Note that the set of {pi ; i = 0 to n - 1 } can be regarded as an
alternative representation of the rotation angle 8. Hence, even
in the angle accumulation mode, often it is not necessary to
explicitly compute 8 using Eq. 5.

Shift Sequence

The shift sequence { s(m,i); 0 I i 5 n-1) determines the
convergence of the CORDIC iteration, as well as the mag-
nitude of the scaling factor Km(n). Since there are only n finite

18 IEEE SIGNAL PROCESSING MAGAZINE JULY 1992

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

elementary rotation angles { am(i); i = 0, n - 1 }, it is impos-
sible to represent arbitrary rotation angle 8 without error. Let
us define an angle approximation error as:

In the vector rotation mode, since z(0) = 8, from Eq. (6), we
have 6 = z(n). In the angle accumulation mode, one can easily
show that:

tan-'y(nyx(n) rn = + 1
6 = y(n)/x(O) r n + O 1 tanh-ly(n)/x(n) rn = - 1

The effects of the angle approximation error and the rounding
error on the accuracy of the CORDIC computation have been
analyzed [43]. In general, it is desired that for any given
rotation angle, 8:

I 6 I 5 a,(n - 1) (9)

This condition imposes two constraints on 8. First, the cor-
responding set of elementary rotation angles must satisfy:

Next, 8 must lie within the domain of convergence. That is,

Walther [82] has proposed a set of shift sequence for each of
the three coordinate systems. In particular, for rn = 0 or I ,
s(rn,i) = i, 0 I i 5 n - 1. For rn = -1, s(-l,i) = I , 2, 3 ,4 , 4, 5 ,
..., 12, 13, 13, 14, ...,

The purpose of repeating elements { 4, 13, 40, . . .] in the
hyperbolic coordinate is to assure that Eq. 10 is satisfied.
Along this line of research, X. Hu et al. [40] have proposed a
method to expand the range of A m u p .

Scaling Operation
The multiplication of l/Km(n) in the scaling operation (Eq.

5) imposes significant computation overhead on the CORDIC
algorithm. This is because to perform a multiplication, n
shift-and-add operations will need to be performed. For-
tunately, if we constrain Ipil= 1, and assume [s(rn,i)) is given,
Km(n) can be computed in advance. As such, various techni-
ques have been proposed to reduce computation overhead.

A first approach is to convert I/K,(n) into a canonical
sign-digit representation [5 I]:

JULY 1992

- r - ~ - -r

P

where ~p = f l , and ip are positive integers. Multiplication
with I/K,(n), then will take P-1 shift-and-add operations.
Using the canonical multiplier recoding method [5 11, the
value of P can be reduced to bn, where b is the number of
bits in the internal registers. On the average, PI= bA.

A second approach is to represent l/Km(n) as a product of
Q factors such that:

. Q

where I < 2-b. Given
l/Km(n), similar to the first method, the design goal is to
minimize Q. It has been observed [4], [37] that if some of the
elementary rotation angles are repeated, the resulting scaling
factor, Km(n) can be approximated by a power of 2. Thus the
scaling operation can be accomplished with several addition-
al (repeated) CORDIC iterations with a simple shift operation
at the end. Delosme later suggested use of a simulated anneal-
ing technique to identify the best set of elementary angles to
repeat 1181. Deprettere et a1 [22], [20] proposed a variant of
that method in which some product terms have the form
(1 + q 2-jk + ~ k 2 - j ~) where yk = f 1 for a three-term product,
and yk = 0 for a regular two-term product.

In singular value decomposition and eigenvalue decom-
position problems, an important operation is to diagonalize a
2 x 2 matrix with simultaneous pre- and post- rotation opera-
tions. Observing that the scaling factor is K i (n) in this case,
Cavallaro and Luk [I O] have proposed a simple scheme
(discussed later) to perform exact scaling. This method was
recently studied and enhanced by Delosme [18], [19], and
Yang and Bohme [84].

= f I , i, are positive integers, and I

ARCHITECTURAL DESIGN

Basic CORDIC Processor

A basic CORDIC processor should contain function
modules which realize (a) the CORDIC iterations specified
in Eq. 3; (b) the angle update iteration specified in Eq. 4; and
(c) the scaling operation specified in Eq. 5. The functional
block diagrams for each of these operations are straightfor-
ward (Fig. 2).

The modules in Fig. 2a support a single CORDIC iteration.
It contains dual barrel shifters and dual adders to facilitate the
updating of both x (i) and y (i) simultaneously. The number of
bits to be shifted is controlled by the shift sequence {s(rn, i)) .
The shift sequence can be stored on chip using ROM (read-
only memory) or RAM (random-access memory), or
generated on chip with a simple counter and additional con-
trol devices. The addsubtract operation is determined by the

IEEE SIGNAL PROCESSING MAGAZINE

II - - T

19

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

{G-y-
!-i -:sign cit r i i j vector rotation mcrde

Parafft.1 and Pipelined Arrays

23 IEEE SIGNAL PROCESSING MAGAZINE JULY 1992

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

processors w i l l propagate the result to
on, also in a pipelmed iiimie~' We

time unita. Nei
the luwer-level

ion results of the
ter (~+.Y)T, time units. CURDlC rotatlotis WI

1 /(/f+S)fC,,

Doublj p1
Ct al. [22j. [

ion was first proposed by Deprettere
ipIenzcnting CORUlC-based digital

JULY 1992 IEEE SIGNAL PROCESSING MAGAZINE 21

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

filters. It enables a fine grain pipelining, which helps reduces
the pipelining latency. For Toeplitz system and linear system
solvers, it also facilitates saving total computation time by
almost 50 percent [41]. It was called implicit rotation when
applied to the eigenvalue decomposition problem [181.

IMPLEMENTING ALGORITHMS

In this section, we will illustrate how to utilize a CORDIC
processor array to implement digital signal processing algo-
rithms. Our approach is to reformulate existing DSP algo-
rithms so that they are suitable for implementation with a
CORDIC processor array performing circular, or hyperbolic
rotation operations. The linear rotation operation will not be
emphasized because they can also be implemented, more
efficiently, with MAC based processors. There usually exists
a more efficient scheme for implementing a particular func-
tion. However, the utility of the CORDIC based architecture
lies in its generality andflexibility. With these in mind, we
will survey three categories of DSP algorithm:

(a) Linear transformations, including discrete Fourier
transform, Chirp-Z transform, discrete Hartley transform, and
fast Fourier transform;

(b) Digitalfilters, including orthogonal digital filters, and
adaptive lattice filters;

(c) Matrix based digital signal processing algorithms,
including QR factorization, with applications to Kalman fil-
tering, linear system solvers, Toeplitz and covariance system
solvers, with applications to least square deconvolution, and
eigenvalue and singular value decompositions with applica-
tions to array processing.

Linear Transformations

Discrete Fourier Transform (DFT)

0 < n 5 N - I } , its
O S k 5 N - 1 1 isdefinedas:

Given a complex-valued discrete sequence { X (n) ;
discrete Fourier transform { Y(k);

-j2xO -j27rk -j27r(N- 1)k __ __

Y(k) = X(O)e N + X (1)e + . . . + X(N-l)e N

for 0 5 k I N - 1 . To avoid notational confusion, in this
article we use x(i) , y (i) to denote the rotation coordinates in
the CORDIC algorithm, andX(n), Y(n) to denote the time and
frequency domain sequences in the DSP algorithm. We note,
however, that in most DSP literatures, the time domain se-
quences are denoted by lower case letters, e.g., x(n) . Eq. 14
can be reformulated in a recurrent algorithm format to
facilitate implementation with a CORDIC processor array.
The algorithm is as follows:

Initiation: Y(0,k) = 0 for 0 I k I N - 1
For k = 0 , 1, ..., N-1 Do
Form = 0, 1 , ..., N-1 Do

End m-loop
Y(k) = ~ Y(N*k) /* scaling operation */

K , (n)
End k-loop

(Note that K i (n) is defined in Eq. 5.)
In Figure 4, the sequence { X (n) ; 0 5 n 5 N - 1] is taken

from the left end of this processor array. Each X(n) , which
contains two real numbers x,(n) and xi(n), will be propagated
from the current processor to the next nearest neighbor
processor in a pipelined manner. Since X(n) is not to be
modified during propagation, they can be piped at a rate of
to time unit (1 clock cycle) per stage. Each of the N CORDIC
processors in this processor array will be responsible for
evaluating a particular Y(k) . This implies that N different
rotation angles { 2xmWN; 0 2 m 5 N - 1 } must be stored in
each processor. Since each of each rotation angle requires n
bits to store, the total storage requirement, including the s
scaling iterations, will be nN+s bits.

As Despain pointed out [25] , there is no need to perform
scaling operation in the DFT algorithm. This is emphasized
by placing Kl(n) in front of the rotation matrix. In doing so,
the output will be Ki(n)Y(k) , which is a scaled version of the
desired output, Y(k). Hence, there is no need to perform the
scaling operation, which takes s iterations, for each of the N
CORDIC rotation operation in the m-loop. Instead, only one
final scaling operation is needed to compute Y(k) at the end
of the m-loop as listed in the algorithm. With this scheme, the
average scaling overhead is reduced from s shift-and-add
scaling iterations per CORDIC rotation down to s/N shift-
and-add scaling iterations per CORDIC rotation. Conse-
quently, the computation delay for each Y(k) will be
(nN+s)t, time units; and the total computing time will be
(nN+s+N-l)t, time units. However, since the scaling is done
at the end, the dynamic range of Y(m,k) will be increased by
a factor of Ki(n) , whose magnitude is usually less than 2. To
avoid overflow and loss of accuracy, one extra bit is needed
to store the intermediate result, Y(m,k).

Discrete Hurtley Transform (DHT)
The Discrete Hartley transform is proposed by Bracewell

[6] as an alternative to discrete Fourier transformation. It has
the following formulation:

IEEE SIGNAL PROCESSING MAGAZINE JULY 1992 22

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

OmsN-I

. .. vector vector vector
rotation rotation rotation

{p: }, representation of the same 0 (k) and composite scaling factor

t
Y(N-1)

,A, i---+-l

-#-
Xr(N-l-rn) Xi (N-1-rn) &(O) Xi(0)

t
Xr(N-1) Xi(N-1)

4. A pipelined CORDIC DFT array (a). X(m) will be propagated from processor i to processor i+l every nt, time units. Scaling is done
only once in each processor ufter N CORDIC rotations are all conipleted. Each processor will store the same set of N rotation angles in
the form of {p,). Which angle to use in the mth iteration depends on k. Pipelined CZT array (b). The rotation angle and composite scal-
ing factor will be,fed into each basic CORDICprocessor, one by one. Each processor will cycle through n+s cycles before feeding its
result to the next processor. The input datu re applied to each processor in parallel. The output is available at processor N-1.

Initiation: Y(0,k) = 0 for 0 5 k 5 N - 1.
F o r k = 0, 1, ..., N-I , Do
Form = 0, 1, ..., N-1, Do (15)

n=O

where { X (n)) and { Y (k)) are both real sequence. To realize
1v DHT in a CORDIC based processor array, we set the initial

coordinates of the CORDIC algorithm to (X(n), X(n)). That
is, x(0) = y(0) = X(n), and we rotate through an angle of
27Ckrl/N. Each term in the above summation will appear as yy.
Again, similar to the case of the DFT, only one scaling
operation is required for every Y(k). The recurrent formula-
tion of the DHT is as follows:

End m-loop;

I* scaling operation *I Y(N,k) Y(k) = ~

Kl@)
End k-loop

JULY 1992 IEEE SIGNAL PROCESSING MAGAZINE 23

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

Note that the DFTarray presented in Fig. 4 can also be applied
to the DHT with x(0) and y(0) tied together. A systolic array
implementation of the DHT based on the CORDIC processor
has been reported recently [1 I].

Chirped Z-Transform (CZT)
The Chirped Z transform evaluates the Z-transform of a

discrete, complex valued sequence { X (n)) at the points
:k = A l V for k = 0, 1, . . ., K-1, where W = Woe-Jcp0, and
A =A,e"" with WO, A(,, (po, and 0o being real numbers.
Hence,

k

N- I N- I

Traditionally, CZT can be evaluated with fast Fourier trans-
formation using O(N+K-l)I o g(N+K-1) operations [66].
However, when K << N, direct evaluation of Y(ZQ would be
more efficient.

A CORDIC processor array of the CZT was proposed [44]
which is based on the following recurrence algorithm for-
mulation:

Initiation: Y(0,k) = 0 for 0 I k I K - 1.
Fork = 0, I , ... K-1 Do
Form = 0, I, ..., N-I Do

Xr(N- 1 -m)
+[X;(N- 1 -m) 1

End m-loop
End k-loop
Output: Y(k) = Y(N,k)

I n each iteration of the m-loop, each Y(m,k) will be multiplied
with a scaling constant, A;'$. This scaling constant can be
combined with the scaling operation in the CORDIC algo-
rithm. That is, instead of multiplying l/K~(n), and then fol-

lowed by A,' M/3, we will multiply acomposite scaling factor,

A,' $JKl(n). A side effect, however, is that when CZT is
realized with a CORDIC processor array, different Y(k) may
need different numbers of CORDIC iterations for scaling
during each m-loop. This will cause scheduling difficulties in
a pipelined implementation. On the other hand, it also
presents a special opportunity to further reduce the number
of CORDlC iterations using a,forwardangle recoding (FAR)
method (441, (461.

Briefly speaking, in the FAR method, the internal repre-
sentation of the rotation angle (p;) can take integer values

5. Signa/,flow graph of the FFT (decimation in time) algorithm
(a). CORDIC implementation (b) of the DIT FFT algorithm in (a).
Each bo.w is a CORDICprocessor. Thick arcs in (a) are realized
bv the shaded box in (b).

other than f l . Whenever p; = 0, the corresponding CORDIC
iteration can be skipped. Hence, under the constraint of
convergence condition (Eq. 9), the objective of FAR is to

minimize C, I pi I . As such, the total number of CORDIC

iterations can be minimized. Of course, according to Eq. 5 ,
setting certain p; = 0 will cause the scaling factor, K1 (n). to
be dependent on the rotation angle. Specifically, using FAR,
each rotation angle, 8, will have a different scaling factor.
However, the radial scaling factor,A,' wk, is dependent on the
rotation angle (indexed by k) anyway. Hence, a different
K l (n) for each different index, k, will pose no extra computa-
tion or storage overhead. The architecture of a pipelined
CORDIC processor array with forward angle recoding is
illustrated in Fig. 4b.

n- I

r = O

Fast Fourier Transformation (FFT)
The fast Fourier transformation is perhaps the most fre-

quently used DSP computing algorithm in modern digital
signal processing systems. Let N be the total number of points
in the DFT. If N = N1.N2, then, we may let index

24 IEEE SIGNAL PROCESSING MAGAZINE JULY 1992

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

Complex Add/Sub. CORDIC rotations Dual shift register

C,D, C', D' are all
complex numbers.

8 stages 4 stages 2 stages 1 stage
n

i-p-p

6. Pipelined CORDIC FFT array [26].

n = nl + Nin2, with 0 I n i <=NI - 1, and 0 I n2 I N2 - 1 .
Note that

Therefore, for 0 I: k I N -1,

I f N I = 2, and N2 = N n , the above equation becomes:

In other words, the original N-point DFT problem now be-
comes two N/2 point DFT sub-problems for each Y(k).
Recursively applying this procedure will lead to the popular
radix-2 FFT algorithm.

The basic operation in a FFT algorithm is called a Butterfly
operation, which may have several different formats. For
example, consider the decimation-in-time Butterfly opera-
tion:

2nk
N

2xk

C' = C + D.c~p(-j-)

D' = C - D cxp(-j-) I N

and the decimation-in-frequency Butterfly operation:

C'= C + D
D' = (C - D) exp(-Jy)

2xk

Note that C, D, C' and D ' are all complex numbers. The above
equations require a complex number multiplication (with a
uni-modulus complex number), and two complex number
additions. The complex number multiplication can be done
with n+ s CORDIC iterations and scaling iterations. The two
complex additions will need just one more clock cycle.

For small N, a FFT computation can be realized directly
with a network of CORDIC processors (Fig. 5). A signal flow
graph of an 8-point decimation-in-time FFT [66] is shown in
Fig. 5a. In Figure Sb, each Butterfly operation is replaced by
a rectangular box representing a CORDIC rotation followed
by a complex addition or subtraction. To see how the structure
in Figure Sb is obtained from Figure Sa, we highlighted the
corresponding Butterfly operation in the last stage in Figure
Sa, and the CORDIC processor in the shaded box in Fig. 5b.

For large N, the complicated global interconnection re-
quirements unfortunately make it difficult to implement effi-
ciently with a pipelined VLSI array, without severe
performance penalty [60]. Despain [26] has reported an im-
plementation of a 16-point FFT building block using a linear-
ly array of specialized hardware to minimize the number of
addsubtract stages. A block diagram of that processor is
shown in Fig. 6. This processor array is able to achieve a
pipelining period of 1. Also, the number of delay elements
vary from stage to stage. It has N / 2 delays in the first stage,
NI4 in the stage, and so on.

Digital Filtering

Most of the existing digital filtering structures are imple-
mented with multiply-and-add operations. However, the

JULY 1992 IEEE SIGNAL PROCESSING MAGAZINE 25

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

~~ -2
7. Basic rotor in orthogonal digitalfilters.

CORDIC structure is useful in implementing a large class of
digital filtering functions with some unique advantages. In
particular, two types of digital filtering structures will be
discussed in this section: the orthogonal digitalfilter (ODF),
based on circular rotations; and the lattice filter (LF), based
on both hyperbolic and circular rotations. In fact, the basic
building blocks of these two types of filter structures are
intimatedly related.

Orthogonul Digitul Filter
An orthogonal digital filter is a digital filter of which the

oLerall numerical computation at each sample instance can
be described by an orthogonal or unitary matrix. There are a
number of advantages of an ODF [27] compared with other
filter structures. First, it has low sensitivity both in the
passband and the stopband, and is invariant under frequency
transformation. In addition, it is stable in spite of parameter
quantization. It is also free from the limit cycle and ovefflow
oscillations. Finally, the pipelining, modular structure also
makes it viable for VLSI implementation.

The basic building block of an orthogonal digital filter is
the so-called rotor (cf. Fig. 7)- a circular rotation unit which
realizes the following two-port transfer function:

wherejand y are inputs, and x, and g is the output.
Gray and Markel [36] proposed a cascaded structure

together with a tapped-sum output to realize a given transfer

based on the Schur algorithm to realize a uniform two-rotor-
per-section ODF for stable transfer functions (Fig. 9). It was
reported later [12] that the Schur algorithm is numerically
sensitive to rounding error, and a remedy was developed. A
different remedy using state space realization has sub-
sequently been advanced by Desai [24]. Vaidyanathan [80]
has presented a unified framework showing that a digital
Lossless Bounded Real (LBR) two port pair can be realized
with two plane rotations. This structure is also a normalized
version of the series adaptor for wave digital filters [32].

Adaptive Lattice Filter
Whereas an ODF is used to implement a given transfer

function as a fixed-weight digital filter, a lattice filter has
found most applications in adaptive signal processing [34].
In other words, most popular lattice filtering algorithms have
been focused on the adaptive updating of the reflection coef-
ficients so that it is able to keep track of the time varying
parameters in the incoming signal. The building block of a
lattice filter is a hyperbolic rotation unit (cf. Fig. IO), which
can be described as:

function. Henrot and Mullis [38] proposed a pr0ce;dure based on
the generalized Levinson algorithm to realize an ODF. Dewilde
and Deprettere [271 based on an embedding technique,
developed several pipelinable, cascaded ODF structures. In
summary, three types of pipelined building blocks, based on
different inter-connections of one or more rotors have been
proposed 1281 (cf. Fig. 8). Any transfer function can be realized
by a of these three building blocks, 8. Three gpes of basic structures of pipelined orthogonal digital

Rao and Kailath [70] proposed a synthesis procedure filter [281.

26

___. .

JULY 1992 IEEE SIGNAL PROCESSING MAGAZINE

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

In the linear prediction theory, k in both of these equations
are known as the reflection coefficient, or sometimes the
PARtial CORrelation (PARCOR) coefficient. To ensure
stability of the filter, the magnitude of every reflection coef-
ficient must be less than unity. That is, Ikl < 1. A basic
cascaded lattice filter structure, implemented with Hyper-
bolic rotation CORDIC processors, is shown in Fig. 1 I . If the
input y (t) is an auto-regressive random process of order p,
then the output of theprh stage,b(r) and b,(j) will be two white
noise random processes.

The rotation angles { Bi; 1 I i I N] can be estimated in a
batch processing manner or a data adaptive manner. If the
correlation function (R Y (n)) of the input (y (t)) is available, a
Toeplitz system equation called the Yule-Walker equation
can be solved to find out the N reflection coefficients; or
equivalently, the N hyperbolic rotation angles. We will show
later that a CORDIC processor array is able to solve a Teoplitz
system of equations efficiently

If the sample data sequence (~ (t)) is to be used, we may
compute the reflection coefficients using, say, the Burg's
maximum entropy method [9]:

c .r;(t') . h; (r/- 1)

t ' I '

If we want to update k;(t) at each time instant, two classes of
adaptive lattice filtering algorithms are available to do so: the
gradient lattice filters (GLF), and the recursive least square
lattice filters (RLSLF) [34]. The GLF algorithms updating the
reflection coefficients use various gradient based formula-
tions. For example, the reflection coefficient k;(t+l) at the

i'" stage at time r+l can be computed as:

where a; is the step size. The RLSLF algorithms update the
reflection coefficients using time and order updating by recur-
sively solving a least square problem. Many fast RLSLF
algorithms have been reported taking advantage of the special
structure between successive data vectors. A comprehensive
survey on adaptive lattice filter algorithms can be found in
[34]. In Fig. 12, several building blocks of these lattice filter
structures are shown.

Although the resulting prediction lattice filter structures

- Sinh e

Cosh

~

IO. Basic lattice filter section.
__

are suitable for implementation with a CORDIC processor
array, the reflection coefficient adaptation algorithms them-
selves usually can not be easily implemented. Previously,
Ahmed et al. [2] had implemented a CORDIC based ladder
filter for speech analysis using a normalized lattice algorithm.
Sibul and Fogelsanger [72] have proposed a modified COR-
DIC algorithm to implement RLSLF. Chen and Lin [13]
proposed a dedicated hardware implementation of a normal-
ized RLS lattice algorithm which they claim to be more
efficient than CORDIC implementation.

Recently, Hu and Liao [49] have proposed a CORDIC-
based adaptive lattice filtering (CALF) algorithm. CALF is a
simplified gradient-based algorithm that is able to directly
update the hyperbolic rotation angle without explicitly update
the reflection coefficients. Note that there are only 2'* possible
combinations of {pi; pi = f l , 0 I i I n-1] . Hence, at most

2n distinct rotation angles can be represented using the given
set of shift sequence.

Let us order these 2n angles in an ascending order, and
label each of them with an index I, 0 I I I 2n - 1, such that:

With this set of indices, the updating formula of CALF can
now be easily described:

I / . Basic 1atticr.filter structure implemented with hyherbolic rota
tion CORDIC processors.

JULY 1992 IEEE SIGNAL PROCESSING MAGAZINE 27

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

-
12. Variance normalized pre-windowed least square lattice predictor

,filter ((a), see [34]). Variance normalized sliding windowed
coinriance lattice predictor filter (b). Note that the second stage is a
rotor implemented with circular rotation. Variance normalized pre-
windowed time and order update lattice predictor filter (c).

I,(t+l) = Ik(f) + sign of (fk(t).hk(t)) (22)

When s(-1,k) = k+l, the corresponding set of (pi) can be
found directly using a simple up/down binary counter. This
makes the implementation of CALF extremely simple com-
pared with previous approaches. In Figure 13, a single sec-
tion of the CALF structure is depicted where the adaptation
of the rotation angle is realized with a simple up/down binary
counter.

Matrix Based DSP Computing Algorithms

Matrix based linear algebra computing algorithms such as
linear system solvers, least square system solvers, QR fac-
torization, eigenvalue or singular value decompositions arise
quite often in modem digital signal processing applications.
For example, linear system solvers can be used in covariance
system equations in the linear prediction problem; QR fac-
torization can be used in least square adaptive filter applica-
tions; and eigenvalue decomposition or singular value

decomposition have been used in high resolution spectrum
estimation, array processing and related problems. In this
section, we will present CORDIC based processor array
structures for implementing these matrix related DSP com-
puting algorithms. Since we have to deal with portions of a
matrix quite often, we shall adopt the following conventions
to simplify the notations used in the algorithms: A(1:5,:) will
be the submatrix of A containing the first five rows, and
A(2:p,3:5) will be the submatrix of A containing elements in
the intersection of the second to thepfh rows with the third to
the fifth columns.

Elementary Row and Column Operations
The purpose of the elementary row operation is to rotate

corresponding pairs of elements in two row vectors so that
one element in the second vector is annihilated. (For column
vectors, a column operation can be performed by post-multi-
plying a 2 x 2 matrix.) Let A(i , :) and A(j , :) be the irh and the
j f h rows of the A matrix. Then, the row operation is equivalent
to pre-multiplying these two row vectors by a 2 by 2 matrix
M:

We may choose M to be a unitary matrix so that circular
rotation can be applied. In this case, we denote M by C(ij,
ACj,l)) to emphasize that A(j. l) is to be nullified, and to
perform the row operation between the ith and the j‘“ rows of
the A matrix. It is easy to verify that:

L J

with 0 = -tan-’[A(j , l) /A(i , l)] . Similarly, one may choose M
so that a hyperbolic rotation between elements of A(i , :) and
A(j,:) are performed. In this case, we denote

1 c o s h v s i n h v
s i n h v c o s h v M = H (i j , A (j , l)) =

with y~ = -tanh-’[A(j , l) /A (i , l)] .
The row operation can easily be realized with a doubly

pipelined CORDIC array (Fig. 3c). A(i,k) and A(j,k) will be

I I

Up/Down Counter

I
13. CORDIC adaptive lattice filter (CALF) [49].

28

~

IEEE SIGNAL PROCESSING MAGAZINE JULY 1992

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

loaded to the local memory of the kfh processor initially. The
head processor will perform angle accumulation operation by
evaluating p; in the if” iteration. The computed pj then will be
propagated to each remaining processors. Note that we do not
have to wait all the pis are computed before initiate the vector
rotation operations in the remaining processors. Thus, the
second processor will be able to commence its operation only
one clock cycle (to) behind that of the head processor.

QR Factorization
In QR factorization, a matrix is factorized into the product

of an orthonormal matrix and an upper triangular matrix. This
operation can be accomplished by a sequence of circular row
operations to nullify elements below the main diagonal of the
matrix. The algorithm is described as follows:

Initiation: Given a

Fori = 1+1 top Do

Output: U(1,:) =A@’([,:)
End 1-loop

A triangular array of CORDIC processors (Fig. 14) is capable
of performing the QR factorization algorithm effectively.

Examnple: Adaptive Antenna Nulling
To illustrate the DSP applications of QR factorization,

consider the least square adaptive antenna nulling problem:
Let the row vector x(t) = [xl(t), x2(t), ...,xp(T)]] be the array
input at time t; and X(r) = [x‘(t) <(+I) . . . ~ ‘ (0) 1‘ be the data
matrix. (Here, the superscript “t” refers to the matrix (vector)
transpose. The index “(I)” refers to the tth time instant.) The
objective is to find a p by 1 coefficient vector E([) for each t
to minimize the square error:

t f

E(r) = c I (f) l 2 = c [&’) - X(tr)E(tt$ (26)
t’=O t’=O

where g(r) = d(t) - X(t)_W(f). Our approach is to apply QR
factorization to X(t) such that:

- -

L A

where Q(t) is an orthonormal matrix, U([) is a p by p upper
triangular matrix, and 0 is a (t+ 1 -p) by p zero matrix. Pre-mul-
tiplying the matrix Q(t) on g(t), we have:

JULY 1992

-~ ~

I I . vector rotat ion

Al
14. q-by-q triangular CORDIC array for QR factorization. The
matrix A is p-by-q (usually, p 2 y).

- Z(r) = Q(t)g(r) - Q(t) X(t)Y(r) = [z‘”] - [‘f’]._W(r).
go)

(27)

Thus, the least square solution of E(t) can be found as:

- k(t) = rr’(t).?(t)

Assuming that a new (row) data vector x(t+l) = [xl(t+l)
x2(1+1) ... xp(f+l)] is now received. Our goal is to update
- ~ (t) to k(t.1). This can be accomplished by performing p
row operations between each row of the U(t) matrix and the
x(t+l) data vector to nullify E(f+l). This procedure will lead
to an updated upper triangular matrix U(r+l), and the updated
coefficient vector:

Rader et a1 [69] have implemented a wafer scale linear
CORDIC processor array called MUSE (Fig. 1.5) to imple-
ment this adaptive nulling algorithm. They incorporate a
forgetting factor into the error formulation so that the scaling
operation does not have to be exact. As a result, they achieve
significant savings in the scaling operation.

Much research has been reported on using triangular sys-
tolic array for QR factorization [3.5], and recursive least
square (RLS) processing [62]. Recently, Cioffi [1.51 reported
a fast QR-RLS algorithm which requires O(N) rotations in-
stead of O(N2) rotation.

Example: Kulman Filtering (KF)
QR factorization can also be applied to solve the Kalman

IEEE SIGNAL PROCESSING MAGAZINE 29

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

U (3 3 U(3 4 u (3 5

Processor in the shaded area has been "lolded" back
so that all the processors can be kept busy al l lhe time I

ip ----L

15. Linear CORDIC for adaptive antenna nulling (MUSE).

filtering problem. A least square formula due to Paige and
Saunders [67] embedded the KF recursion formula into a
matrix triangularization formulation:

m,here the definitions of each block entries can be found in
[60]. Sung and Hu [77] has previously proposed a multiple
VLSI systolic array implementation of the square-root for-
mulation of the Kalman filter algorithm using a 32-bit COR-
DIC data path chip.

Linear System Solver

systems of equations:
Given a NxN matrix A, and a Nxl vector b, a linear

arises quite often in digital signal applications. Conventional
methods involves the LU factorization of the A matrix, fol-
lowed by a back-substitution step. On the other hand, Eq. (30)
can be rewritten as [A b] [x' 1]'= 0. Hence the solution
vector lies within the null space of the (A b] matrix. To find
&explicitly, consider the triangularization of the [A bl'matrix
which is embedded in a (2N+l)x(N+l) matrix:

where "*" are terms which are of no concern. If QR factoriza-
tion is used, M will be an orthonormal matrix. If Gaussian
elimination is used, M will be a lower triangular matrix. Note
that the last row of the M matrix in above equation is such
thatp'A' + 4.b' = 0. Hence, the solution to Eq. 30 can be found

as:&=--.
- 1
4

This algorithm is a slightly modified version of the classi-
cal Fadeev algorithm. As a variation of the above algorithm,
it is suggested [52] that when A = U' U and A-' = L'L are
both given, the above augmented matrix can be modified as:

Now we have p'U + q b' = e', and = p'L. Therefore,

Toeplitz System and Covariance System Solvers
In many advanced signal processing algorithms, the coef-

ficient matrix A in the linear system of equations has a special
low displacement rank [33], [55] structure. Displacement
rank is a measure of closeness between a given square matrix
and a certain Toeplitz matrix. A Toeplitz matrix has a struc-
ture that all elements along the diagonal direction are the
same. That is,

t . .= t i+=tk for-N+l < k < N - I,and 1 I i , j < N ' J

For example, a 4x4 Toeplitz matrix Tis:

A matrix has a structure which is close to a Toeplitz matrix if
it has low displacement rank. Let us denote a shift matrix as:

0...0 0

Z=[l,v-, 0 1

The (+) displacement rank of a matrix A, denoted by a, is
then defined as the rank of a displaced matrix, A - ZAP. In
fact, the displacement matrix can be factorized (using, say,
LDU factorization) into the form:

A - a2 = GCG' = G,G', - G,G; (33)

where C = diag [I,, - l ~ c - ~] , and G N X ~ is called a generator
matrix because the original A matrix can be recovered from
G according to the equation:

30 IEEE SIGNAL PROCESSING MAGAZINE JULY 1992

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

(34)

where L@;) = [Ilk 1 is a lower triangular Toeplitz matrix with
gi being its first column. If the generator. G. is also permis-
sihlr, that is. there exist an ax1 vector p such that Gp =

[I 0 . . . 0 1'. then thc L L' factorization of A-' can also be
computed explicitly. Any generator matrix can be made per-
missable by adding two more redundant vectors 1611. With
the generator matrix. a fast Cholesky factorization algorithm
then can be applied to compute the U'U Cholesky factoriza-
tion of the A matrix as well as the L L' Cholesky factorization
of the A-' matrix, using O(aN') operations instead of O (N)
operations. Thus. this method will be very appealing when
u < < N :

3

Initialization: Given N, a, p , Q, and the permissible
generating matrix cma. Let F(') = [p G (I : ~ , ~ : N) I,
U(1,1:N)=C(l,l:N),andL(l,l:N) =[pi 0 ... 01.

Form = I to N Do
/* Perform Circular rotation on the first p rows; and the

remaining a-p rows of F separately.*/

. F("'(1 :p, 1 : N+ 1)

' F(")(pi l :a , l :Nil)
/* Perform Hyperbolic rotation on the first and the

p+lrh rows of F*/

output: [Urn, 1:m) U(m,m:N)]
I* Right shift the first row ofthe F matrix */
F (m + ') (~ , l : ~ + l) = [o ~ r n , ~ : m > ~ (m , m : ~ - l) l
End m-loop

E.miipIe: Fcr.ct L>rc,ori~,olution Algoritlim [47/
Consider ;I discrete time, causal linear system with known

finite impulse response sequence [h(k)). random input se-
quence { u(k)] , and random observation noise sequence
{n(k)] . Let { z(k)) be the output of this system, then:

(35)

for k = 1.2, ..., N. Given [h(k)], and [z(k)], the objective of
deconvolution i \ to recover the input { u(k)) in a least square
sense. The solution requires the solution of a linear system of
equations of the form:

2 where V' = E/u'(k)/, (5 = E/n'(k) / , and H is a lower trian-
gular Toeplitz matrix with i ts first column being
[h(O) /I(1) . . . h(N- 1)]I. It is easy to verify that a = 2, p = 2.
Furthermore. since only one row of the U matrix (U'U fac-
torization of I-) and of the L matrix (LL' factorization of A-')
are computed in each iteration, the linear system solver
described in section IV.3.4 can be applied to compute w
explicitly. Note that due to the structure of the C matrix, we
have a =2, p = 2. Hence, there is no hyperbolic rotation
involved. Moreover, the generator matrix

1 v h (0) VIZ(1) . . . vh(N-I)
0 0 ... 0

L J

is permissible, with p = [0 110 1'.
These observations lead to the following fast deconvolu-

tion algorithm, where the solution, w, is computed explicitly:

Initiation:

Form = I t o N D o

JULY 1992

-- -

IEEE SIGNAL PROCESSING MAGAZINE 31

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

Eigenvalue and Singular Value Decomposition

Eigenvalue decomposition (EVD) and singular value
decomposition (SVD) have found extensive applications in
modem digital signal processing. High resolution spectral
estimation techniques, such as the Pisarenko's method [68],
high resolution array processing algorithms such as the M-
IJltiple SIgnal Classification (MUSIC) method [7 I] , all re-
quire the computation of the eigenvalue decomposition or
the singular value decomposition of the spatial covariance
matrix of array inputs.

Given a p x q real matrix A, its singular value decomposi-
tion has the form:

(37)

where U and V are, respectively, p x r (r < min (p,q)) and
rxq orthonormal matrices satisfying U'U = V'V = Zr. C = diag

A13 A14 1
A23 A24 - -* 8 Propagate

A l l A12

exchange

' A51 A52

L-

. ~~ _ _ _ _ _ _ _ _ _ _ ~ ~~ -
16 Two dirnen5ronal CORDlCproceywr array for SVD and EVD
[IOI.

[GI, . . ., o r] is a rxr diagonal matrix containing the r singular
values (~ i ; i = 1 to r}. By definition, we have Gi > 0,
I < i l r .

When A is a p x p real, symmetric square matrix. it admits
an eigenvalue decomposition of the form:

r

A = EAE' = hiviv:
;= 1

where E is a p x p orthonormal matrix such that E E' = E' E =
Zp. A= diag[hi, . . ., $1 contains the p real eigenvalues.

Sequential algorithms for EVD and SVD has been well
developed and ready to run Fortran routines can be found in
public domain packages such as EISPAK [73], or LINPAK
[29]. A number of efforts have also been made to map these
sequential algorithms to a systolic array for parallel, pipelined

processing [7], [lo], [18], [39]. For real-valued matrices, a
CORDIC processor can be applied to efficiently compute
both singular value and eigenvalue decompositions.

Basically, a given matrix is diagonalized by pre- and
post-multiplying with a sequence of unitary transformations.
In other words, SVD and EVD can be accomplished with a
sequence of row and column operations. Thus, a CORDIC
processor array is very suitable for the implementation of
SVD or EVD of real-valued matrices.

Below, we present an approach based on the classical
Jacobi method [83]. This method was proposed by Brent and
Luk [7], and later implemented by Delosme [181, Cavallaro
[IO] using CORDIC processor arrays. The Brent-Luk method
is applicable both for SVD and EVD (symmetric matrix only)
of real, square matrices. In the following discussion of this
algorithm, we shall assume the A matrix is asymmetric, and
comment on the changes need to be made when A become
symmetric.

For convenience, we shall assume the dimension of the A
matrix p is an even number (if this is not the case, we simply
append the A matrix with one row and one column of 0s so
that it has even dimension).

We will partition the A matrix into 2 x 2 blocks. For each
of these pL2 blocks along the diagonal of the A matrix, the
following 2 x 2 two-sided rotation operation can be per-
formed to nullify the two off-diagonal elements simul-
taneously:

In Eq. (39), the left and right rotation angles, 01 and 0, can be
solved from the following two equations:

1 c + h
a - d €4 + 0, = tan-

In symmetric eigenvalue computation problems, b = c on
each diagonal block. Hence, Eqs. 40a and 40b reduce to:

Each 81 computed in the ith diagonal block will be propagated

to all the blocks in the ith row. Each 0r computed will be

propagated to all the blocks in the i fh column. Thus, the ij
off-diagonal block will receive 01 from the irh diagonal block,
and 9, from the j f h diagonal block. After every block has
completed this two-side CORDIC iteration, every pair of the
2ifh and the 2i+lth column, as well as the rows, will be
interchanged. This enables the beginning of the next iteration.

Obviously, the two-sided rotation is very suitable for

32

.

IEEE SIGNAL PROCESSING MAGAZINE JULY 1992

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

CORDIC implementation [IO]. Figure 16 shows a 3 x 3
CORDIC processor array for implementing this algorithm for
a 6 x 6 matrix. Using the two-sided rotation method, the
scaling operation can be significantly simplified: since two
CORDIC operations are performed at a time, the scaling
factor will become:

t7- 1 n- 1
1 1 1 a = n + 2-2“(I ,i) = “1.22

r=O i d

N o w , i f J = (l , 3 , 5 ,..., [:]-l],

t i - I

2 - 2 j 1 . n [1 + 2-2i] = 1 + 0(2Xn-’)
j e J i d

where 0(2-n-1) are terms which are smaller than 2?. Assum-
ing the register length is also n bits, these terms will not affect
the accuracy of the result. Hence, up to n-bit accuracy, we
have l/K:(n) = n[1 - 2-2j]. In other words, for every two

CORDIC operations(1eft and right), approximately n/4 addi-
tional iterations are used for scaling. Thus the savings is
significant.

In the original formulation, as seen in Eqs. 40a and 40b,
the rotation angles Or + Or and Or - 01 must be computed
explicitly using Eq. 4 in order to compute Or and Or. Thus, the
double pipelining technique is not applicable. Delosme [I 81
has proposed some modifications to enable the use of double
pipelining.

0

CONCLUSION

In this article, we presented the basic CORDIC algorithm,
and a partial list of potential applications of a CORDIC-based
processor array to digital signal processing. Due to space
limitations, many exciting on-going research projects could
only be broadly addressed in the discussion. Details such as
QR least square adaptive filters [151, and on-linear implemen-
tation of CORDIC algorithms [30], for example, have been
left out. We hope that this article stimulates further interest in
the development of CORDIC-based digital signal processing
algorithms and CORDIC-based special purpose array proces-
sors.

ACKNOWLEDGMENT

The author would like to thank Dr. J. Deller, editor-in-
chief of the SP Magazine, for his patience during the prepara-
tion of this manuscript. Many useful comments from the
anonymous reviewers are also deeply appreciated.

Yu Hen Hu received his B.S.E.E. degree from National
Taiwan University, Taipei, Taiwan, ROC in 1976. He
received the M.S.E.E. and Ph.D. degrees in Electrical En-
gineering from the University of Southern California, Los

Angeles, in 1980, and 1982, respectively.
From 1983 to 1987, he was assistant
professor in the Department of Electrical
Engineer ing at Southern Methodist
University, Dallas, TX. He joined the
Department of Electrical and Computer
Engineering at the University of Wiscon-
sin, Madison, in 1987 as an assistant

professor. Currently, he serves as associate professor. His
research interests include VLSI signal processing, artificial
neural networks, spectrum estimation, fast algorithms and
parallel computer architectures, and computer aided design
tools for VLSI. He has published more than 100 journal and
conference papers in these areas. He is a former associate
editor (1988-90) for the IEEE Transactions of Acoustic,
Speech and Signal Processing in the areas of system iden-
tification and fast algorithms. Dr. Hu is a member of IEEE,
SIAM, and Eta Kappa Nu.

f

REFERENCES

[I] Abuzzo, J., “Applicability of CORDIC algorithm to arithmetic process-
ing”, IEEE Eighteenth Asilomar Conf: on Circuits, Systems and Computers,
Pacific Grove, CA, USA, Nov. 5-7, 1984.

[2] Ahmed, H.M., and M. Morf. “Synthesis and control of signal processing
architectures based on rotations”, Proc. qf’ the Firsf Int ’ l Con$ on VLSI,
Edinburgh, Scotland, Aug. 18-21, 1981,

131 Ahmed, H.M., M. Morf, D.T.L. Lee, and P.H. Ang, “A VLSI speech
analysis chip set based on square-root normalized ladder forms”. Proc. 1981
ICASSP, Atlanta. GA, I98 I , pp. 648-653.

[4] Ahmed, H.M.. “Signal Processing Algorithms and Architectures”, Ph.D
dissertation, Department of Electrical Engineering, Stanford University,
Stanford. CA, June 1982.

[5] Ahmed, H.M., “Alternative arithmetic unit architectures for VLSI digital
signal processors”, VLSl and modern signal processing, Prentice-Hall,
Englewood Cliffs, NJ, 1985.

[SI Bracewell. R. N., “Discrete Hartley Transform”, J. Opt. Soc. Arner., Vol.
73. No. 12, pp. 1832- 1835, Dec. 1983.

[71 Brent, R. P, and F. T. Luk, “The solution of singular-value and symmetric
eigenvalue problems on multiprocessor arrays,” SIAM .I. Sci. Star. Comut.,
Vol. 6, No. I , pp. 69-84, 1985.

[8] Bu,J., E.F.A. Deprettere, and F. De-Lange, “On the optimization of
pipelined silicon CORDIC algorithm”, Proc. of’ EUSIPCO-86 Signal
Processing 111: Theories and Applications, Hague, Netherlands, pp. 1227-
30, Sept. 2-5, 1986.

[91 Burg, J . P., Maximum Entropy Spectral Ancrlysis, Ph. D. dissertation,
Stanford University, Stanford, CA, 1975.

[IO] Cavallaro, J.R., and F.T. Luk, “Architectures for a CORDIC SVD
processor”, Proc. SPlE Int. Soc. Opt. Eng. (USA), vol. 698, pp. 45-53, 1987.

11 I J Chang, L.W., and S. W. Lee, “Systolic Arrays for the discrete Hartley
Transform” IEEE Truns. o n Signal Processing, Vol. 29, No. 11, Nov. 1991,
241 1-2418.

[I21 Chapmann, R, and M . A. Rahman, “A generalized design method for
orthogonal IIR lattice filters” Proc. ICASSP88, Glasglow, Scotland, 1988,
pp. 829-832.

[131 Chen, S. G . and J.-F. Lin, “Efficient implementation of the normalized
recursive least square lattice filter”, Priic. ICASSPYI, pp. 1565- 1568, Toron-
to, CANADA, 199 1 ,

[I41 Chen, W.H., C.H. Smith, and S.C. Fralick, “A fast computational
algorithm for the discrete cosine transform”, IEEE Trans. on Cornrnunica-
tion.r. Vol. COM-25, pp. 1004.9, Sept. 1977.

[151 Cioffi, J . M., “The fast adaptive ROTOR’S RLS algorithm”, IEEE Trans.
on Signid Processing, Vol. 38, No. 4, Apr. 1990, pp. 63 1-653.

JULY 1992 IEEE SIGNAL PROCESSING MAGAZINE 33

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

[161 Cosnard, M.,A. Guyot, B. Hochet, J.M. Muller, H. Ouaouicha, P. Paul,
and E. Zysman, “The FELIN arithmetic coprocessor chip”, IEEE Proc. of
the 8rh Symp. on CompurerArithmetic, Como, Italy, May 19-21, 1987.

[I71 Delosme, J.M., “VLSI implementation of rotations in pseudo-Euclidean
spaces”, ICASSP Proc. of Int ’ I Con$ on Acoustics, Speech and Signal
Processing, Boston, MA, pp. 927-930, April 14-16, 1983.

[181 Delosme, J.M., “A processor for two-dimensional symmetric eigenvalue
and singular value arrays,”, Proc. 21-‘h Asilomar Con$ on Circ., Syst., and
Compu., pp. 217-221, Nov. 1988.

[191 Delosme, J.M., “CORDIC algorithms: theory and extensions”, Proc.
SPIE, Advanced Algorithms and Architectures for Signal Processing IV,
Col. 1152, 1989.

[20] Delange, A.A.J., Ed.F. Deprettere, A.J. Vander Veen, and J. Bu, “Real
Time Applications of the Floating Point Pipeline CORDIC Processor in
Massive-Parallel Pipelined DSP Algorithms”, Proc. ICASSP Int ’I Con$ o ~ i
Acoustic, Speech, and Signal Processing, pp. 1013-6, April 1990.

[?,I] Deprettere, Ed. F., “Synthesis and fixed point implementation of
pipelinedtrue orthogonal filters”, IEEE Int’l Con$ on ASSP, Boston, MA,

[22] Deprettere, Ed. F., P. Dewilde, and R. Udo, “Pipelined CORDIC
Architectures for Fast VLSI filtering,” IEEE Int’l Con$ on ASSP, Florida,
pp. 41A.6.1-4, April 1984.

[?3] Deprettere. Ed.F., and K. Jainandunsing, “Orthogonal and J-orthogonal
matrix inversion techniques”, IEEE Int’l Symp. on Circuits and Systems,
Philadelphia, PA, USA, May 4-7, 1987.

1241 Desai, U. B., “A state-space approach to orthogonal digital filters for
VLSI implementation”, Proc. ICASSP89, New York. NY, 1990, pp. 1255-
1258.

I251 Despain, A.M., “Fourier Transform Computers using CORDIC itera-
tions,” IEEE Trans. on Computers, Vol. 23, pp. 993-1001. Oct. 1974.

[?6] Despain, A.M., “Very Fast Fourier Transform Algorithms for Hardware
Implementation”, IEEE Trans. on Computers, Vol. C-28, pp. 333-341, May
1979.

[27] Dewilde, P, and E. F. Deprettere, and C.V. K. Prabhakara Rao, “Or-
thogonal digital filters”, Proc. ICASSP84, Vol. I., pp. 230-233, San Diego,
CA. 1984.

[28] Dewilde, P., Ed.F. Deprettere and R. Nouta, ‘‘Parallel and pipelined
VLSI Implementation of signal processing algorithms.” in VLSIandModern
Signal Processing, S.Y. Kung et al, Eds., Prentice Hall Series, 1985.

1291 Dongarra, J., J. R. Bunch. C. B. Moler, and G.W. Stewart, LINPACK
Urer Guide, SIAM Publications, Philadelphia, 1978.

[30] Ercegovac, M.D., and T. Lang, “Implementation of fast angle calcula-
tion and rotation using on-line CORDIC’, Proc. 1988 IEEE Int’l Symp. on
Circuits aridSystems, Espoo, Finland, June 7-9, 1988.

[3 I] Ercegovac, M.D., and T. Lang, “Redundant and On-Line CORDIC:
Applications to Matrix triangularization and SVD’, IEEE Trans. on Com-
puters, Vol. 39, No. 6, pp. 725-740.

[32] Fettweis, A, “Pseudopassivity, sensitivity, and stability of wave digital
filter.” IEEE Tran.s. Circuit Theory, vol. 19, pp. 668-673, Nov. 1972.

[33] Friedlander, B., T. Kailath, M. Mod, and L. Ljung. “Extended Levinson
and Chandrasekhar equations for general discrete time linear estimation
problems,” IEEE Trans. on Automatic Control, Vol. AC-23. No. 4, pp.
653-659, August 1978.

[31] Friedlander, B., “Lattice filtering for adaptive signal processing” IEEE
Proceedings, vo1.70, No. 8, Aug. 1982, pp. 829-867.

13.51 Gentleman, W. M., and H. T. Kung, “Matrix triangularization by systolic
array”. Proc. SPIE, vol. 298, Real-time signal processing IV, pp. 19-26,
Bellingham, Washington, 1981.

[36] Gray, A. H. Jr., and J. D. Markel, “A normalized digital filter structure”,
IEEE Trans. on ASSP, Vol. 23, No. 3, pp. 268-277, June 1975.

[37] Haviland, G.L., and A.A. Tuszynski, “A CORDIC arithmetic processor
chip”, IEEE Trans. Comput. (USA), vol. C-29, no. 2, pp. 68-79, Feb. 1980.

[38] Henrot, D, and C.T. Mulles, “A modular and orthogonal digital filter
structure for parallel processing”, Proc. ICASSP83, Vol. 2, pp. 623-626,
Boston, MA, 1983.

Vol. 1. pp. 217-220, 1983.

[39] Heller, D. E., and I. C. F. Ipsen, “Systolic networks for orthogonal
equivalence transformations and their applications”, Proc. 1982 Con$ on
AdvancedResearch in VLSI, MIT, pp. 113-122, 1982.

[40] Hu, X., R. G. Harber, and S. C. Bass, “Expanding the range of
convergence of the CORDIC algorithm”, IEEE Trans. on Computers, vol.
40,No. 1, pp. 13-21, Jan. 1991.

[41] Hu, Y.H., “Pipelined CORDIC architecture for the implementation of
rotation-based algorithms”, Int’l Symp. on VLSI Technology, Systems, and
Algorithms, Taipei, Taiwan, May 1985.

[42] Hu, Y.H., and T.Y. Sung, “The Optimal Design of VLSl CORDIC
processor,” Proc. Int’l. Symp. on VLSI Tech., Syst., cind Appl., Taipei,
Taiwan, R.O.C., pp. 31-35, May 1987.

[43] Hu, Y.H., “The quantization effects of the CORDIC algorithm”, IEEE
Trans. on Signal Processing, Vol. 40, No.4, pp. 834-844, April 1992.

[44] Hu, Y.H., and S. Naganathan, “Efficient Implementation of the Chirp
Z-Transform using a CORDIC processor”, Asilornar Cor$ on Circuits,
Systems and Signals, CA, Oct. 1988. Also in IEEE Tram. ASSP, Vol. 38, No.

[45] Hu, Y.H., “Parallel eigenvalue decomposition for Toeplitz and related
matrices”, Proc. ICASSP, Glasgow, Scotland, pp. 1107-10, May 1989.

[46] Hu, Y.H., and S. Naganathan, “An AngleRecoding method for CORDIC
algorithm Implementation”. IEEE Trans. of Computers, (to appear).

[47] Hu, Y.H., and P.H. Milenkovic, “A fast least square deconvolution
algorithmfor vocal tract cross-section estimation,” IEEE Trans. on A S P ,
June 1990, pp. 92 1-924.

1481 Hu, Y.H., and H.M. Chern, “VLSI CORDIC array structure implemen-
tation of Toeplitz eigensystem solvers,” Proc. ICASSP. pp. 1575-8, April
1990.

[49] Hu, Y. H., and H.-E. Liao, “CALF: a CORDIC adaptive lattice filter”,
to appear at IEEE Trans. on Signal Processing, Vol. 40, No. 4, pp. 990-993,
April 1992.

[50] Hu, Y. H., H. M. Chern, “An efficient CORDIC backward angle
recoding algorithm and its applications to digital signal processing,” (suh-
mittedj.

[S 1] Hwang, K.. “Computer Arithmetic principles, architecture, and design”,
John Wile? & Sous, Inc., New York, 1979.

[52] Jainandunsing. K., and E.F. Deprettere, “A new class of parallel algo-
rithm for solving systems of linear equation,” SIAM J. Sri. Stat. Comput.,
vol. IO, No. 5, pp. 880-912, Sept. 1989.

[53] Jou, I. C., T. Sung, Y. Hu, and T. Parng, “A CORDIC implementation
of pipelined Toeplitz system solver”, IEEE Int’l Syrup. on Circuits and
Systems, Kyoto, Japan, June 1985.

[54] Jou, I.C., Y.H. Hu, and T.M. Parng, “VLSI algorithms and pipelined
architectures for solving structured linear systems”, Pmc. VLSI Algorithms
and Architectures. Agean Workshop on Computing, Loutraki, Greece, July
1986.

[55] Kailath, T., S.Y. Kung, and M. Mod, “Displacement ranks of
matrices and linear equations,” J. Math. Anal. Appl., Vol. 68, No. 2, pp.

[56] Kalman, R.E., “A new approach to linear filtering and prediction
problems”, J . of Basic Engineering\fR, 82D, pp. 34-45, March 1960.

[S7] Kung, H. T., “Why systolic architectures?’, IEEE Computer, Vol. 15,
No. 1, Jan. 1982.

[58] Kung, S. Y., “AToeplitz approximation methodand some applications”,
Proc. Int. Symp. Mathematical Theory, NetworkSy.stems. Santa Monica, CA,
Aug. 1981, pp. 262-266.

1591 Kung, S.Y., and Y.H. Hu, “A highly concurrent algorithm and pipelined
architecture for solving Toeplitz systems,” IEEE Trans. on A S P , Vol. 31,
No. I, pp.66-76, Feb. 1983.

[60] Kung, S. Y., VLSIArray Processors, Prentice Hall, 1987.

[61] Lev-Ari, H., and T. Kailath, “Lattice filter parameterizations and model-
ing of nonstationary process,” IEEE Trans. Inform. Theory, IT-30, pp. 2- 16,
1984.

[62] McWhirter, J . G., “Recursive least squares minimization using a systolic
array”, Proc. SP1431, real time signalprocessing VI. pp. 105-1 12, 1983.

2, Feb. 1990, pp. 3.52-354.

395-407, 1979.

34 IEEE SIGNAL PROCESSING MAGAZINE JULY 1992

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

[63] Naganathan. S., and Y.H. Hu, “Architectural design styles in the VLSI
implementation of real discrete Fourier transform”, Proc. ISCAS, IEEE
Symp. on Circuits and Systems, New Orleands, LA, May 1-3, 1990.

[64] Naganathan, S., “Design Methodology For The Implementation Of
Rotaion BasedAlgorithms Using A CORDIC Processor”, Ph.D dissertation,
Department of Electrical Engineering, Southern Methodist University, Dal-
las, Tx., Mar. 1990.

[65] Note, S. . J. Van Meerhergen, F. Cathoor, and H. De Man, “Automated
synthesis of a high speed CORDIC algorithm with the Cathedral-I11 compila-
tion Fystem”, Proc. 1988 / € € E ISCAS, Espoo, Finland, June 7-9, 1988.

[66] Oppenheim, A.V., and R.W Schafer, “Digital Signal Processing”,
Prentice Hall. 1975.

[67] Paige, C. and M. Saunders, “Least square estimation of discrete linear
dynamic systems using orthogonal transformation”, SIAM J. Numerical
AnaIy.sis, pp. 180-183, 1977.

[68] Pisarenko, V.F., “The retrieval of harmonics from a covariance func-
tion”, Geophys J . Roy. Astrorzorn. Soc., Vol. 33, pp. 347-366, 1973.

[69] Rader, C.M.. D.L. Allen, D. B. Glasco, and C. E. Woodward, “MUSE
- A systolic array for adaptive nulling with 64 degrees of freedom, using
Givens transformations and wafer scale integration”, MIT Lincoln
Laboratory, Tech. report 886, May, 1990, Lexington, MA.

[70] Rao, S.K.. and T. Kailath, “Orthogonal digital filters for VLSI im-
plementation,” / €€E Trans. on Cir. & Syst., Vol. 3 1, No. 1 1, pp. 933-945,
Nov. 1984.

17 I] Schmidt, R., “Multiple emitter locations and signal parameter estimation”,
Proc. RADC Spectral Estiniution Workshop, ROME, NY, 1979, pp. 243-258.

[72J Sibul, L.H., and A.L. Fogelsanger, “Application of coordinate rotation
algorithm to singular value decomposition”, Proc. q f lEEE Inlr’l Symp. on
Circuits orid Sy.\tein.s, Montreal, Que., pp. 821-4, May 1984.

[73] Smith, B.T., J . M. Boyle, Y. Ikebe. V.C. Klema. andC. B.Moler, Matrix
Eigensystein Routines: EISPACK Guide, 2nd ed., Springer-Verlag, New
York, 1970.

[74] Sung, T.Y., Y.H. Hu, and H.J. Yu, “Doubly pipelined CORDIC array
processor for solving Toeplitz Systems”, Proc. of the Twenty-third Annual
Allerton Conf on Communication, Control, and Computing, Monticello, IL,
Oct. 1985.

[75] Sung, T.Y., T. Parng, Y. Hu, and P. Chou, “Design and implementation
of a VLSI CORDIC processor”, IEEE Int’l Symp. on Circuits and Systems,
San Jose, CA, pp. 934-5, May 1986.

[76] Sung, T.Y., Y.H. Hu, and H.J. Yu, “Doubly pipelined CORDIC array
for digital signal processing algorithms”, IEEEICASSPInt’l Con$ on Acous-
tics, Speech and Signal Processing, Tokyo, Japan, pp. 69-72, Apr. 1986.

[77] Sung, T.Y., and Y. H. Hu, “Parallel VLSI implementation of Kalman
filter”, IEEE Trans. on Aerospace and Electronic Systems, Vol. AES 23, No.
2, pp. 215-24, March 1987.

[78] Timmermann, D., H. Hahn, B. J. Hosicka, and G. Schmidt, “A program-
mable CORDIC chip for digital signal processing applications”, IEEE J. of
Solid-State Circuits, Vol. 26, No. 9, Sep. 1991, pp. 1317-1321.

[79] Udo, R.,E. Deprettere, and P. Dewilde, “On the implementation of
orthogonal and orthogonalizing algorithms using pipelined CORDIC ar-
chitectures”, IEEE EUSIPCO Proc. of 2nd. European Signal Processing,
Erlangen, Germany, Sept. 1983.

[80] Vaidyanathan, P.P., “A unified approach to orthogonal digital filters
and wave digital filters based on the LBR two-pair extraction”, IEEE Trans.
on Circuits and Systems, July 1985, pp. 673-686.

[81] Volder, J.E., “The CORDIC Trigonometric computing technique,” IRE
Trans. on Electronic Computers, Vol. EC-8, No. 3, pp. 330-4, Sept. 1959.

[82] Walther, J.S., “A Unified algorithm for elementary functions” Spring
Joint Computer Con$, pp. 379-385, 1971.

[83] Wilkinson, J. H., The Algebraic Eigenvalue Problem“, Oxford Univer-
sity Press, 1965.

[84] Yang, B., and J.F. Bohme, “Reducing the computations of the SVD array
given by Brent and Luk”, Proc. SPIEAdvanced algorithms and architectures
for signal processing, vol. I 152, pp. 92- 102, Aug. 1989.

Digital signal processor code modules from lLLlC0
provide you with instant modem capability for realizing
all of the CClTT Group 3 facsimile modem standards:
V.21, V27ter, V.29, and the new V.17. These modules
are available for many of the popular processors. Or
lLLlC0 will translate its code library for the processor
of your choice. FAX code modules are ideal for shared
processor environments such as voicelFAX multiplex
and multi-media applications.

lLLlC0 can provide custom features to support user
special requirements:

0 Direct 64Kbls PCM interface using sample
interpolation.

0 Multiple independent modems in one processor.

0 V.21 versus QAM incoming signal discrimination.

I ZLLZCO!
TELECOMMUNICATION PRODUCT DEVELOPMENT

2700 Augustine Drive Phone: 408-980-81 70
Santa Clara, California 95054 FAX: 408-980-9327

Model 250 for Algorithm Development,
Data Acquisition, lnstrumenta tion, Audio.

0 TMS320C25 DSP at 10 MIPS.
0 Up to 192 Kwords RAM.
0 Multi-Channel Analog IO - 250K Samples/sec.
0 Development Software, including Assembler &

Debugger.
0 Applications Software includes FFT, Signal

Display, Data Acquisition & Waveform Editor.
0 No Gap Sampling to/from Disk at Very High

Rates.
0 Supports Multiboard & Standalone (EPROM)

Operation.
0 From $ 1 095. Other DSP Products Available.

89 Westland Avenue
Rochester, N.Y. 14618

(716) 473-3610

Circle Reader Service Number I6

JULY 1992 IEEE SIGNAL PROCESSING MAGAZINE

~~ ~~

Circle Reader Service Number 7

35

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore. Restrictions apply.

