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n the past decade, the unprecedented advances in VLSI 
technology have stimulated great interests in developing 
special purpose, parallel processor arrays to facilitate real 

time digital signal processing. Parallel computing systems 
such as systolic arrays [57] and wavefront arrays [59],[60] 
have been extensively studied. The basic arithmetic computa- 
tion of these parallel VLSI arrays has often been implemented 
with a multiplication and accumulation (MAC) unit, because 
these operations arise frequently in DSP algorithms. The 
reduction in hardware cost also motivated the development 
of more sophisticated DSP algorithms to enhance the perfor- 
mance of modern digital signal processing systems. Many of 
these new algorithms require the evaluation of elementary 
functions, such as trigonometric, exponential, and logarithm 
functions, which cannot be evaluated efficiently with MAC 
based arithmetic units. Consequently, when DSP algorithms 
incorporate these elementary functions, it is not unusual to 
observe significant performance degradation. 

On the other hand, an alternative arithmetic computing 
algorithm known as CORDIC (Coordinate Rotation DIgital 
Computer) has received renewed attention, as it offers a 
unified iterative formulation to efficiently evaluate each of 
these elementary functions. Specifically, all the evaluation 
tasks in CORDIC are formulated as a rotation of a 2 x 1 vector 
in various coordinate systems. By varying a few simple 
parameters, the same CORDIC processor is capable of itera- 
tively evaluating these elementary functions using the same 
hardware within the same amount of time. This regular, 
unified formulation makes the CORDIC based architecture 
very appealing for implementation with pipelined VLSI array 
processors. 

In this context, many research efforts have been directed 
to the application of CORDIC based architectures for DSP 
applications 121,131,141, [181, [191,l211,l221,1231, [271, 1411, 
1471,l521,l531,l631,[641 [701, l721,1741,1761,[771,1791, and 
1801. The primary objective of this article is to provide a brief 
survey of these recent research efforts. 

We will first review the state-of-the-art of the evolution of 
the CORDIC algorithm, and CORDIC processors. Then we 
will survey a number of typical DSP applications suitable for 
implementation with CORDIC based hardware. 

CORDIC ALGORITHM AND 
CORDIC BASED PROCESSOR ARRAY 

CORDIC is an iterative arithmetic algorithm introduced 
by Volder [81] in 1956 and later refined by Walther 1821 and 
many others [I], VI, 1101, 1141, 1161, 1171, [201, [IS], 1251, 
1301, [37], 1421, [44], 1451, 1401, 1751, 1771. The CORDIC 
algorithm has found a wide range of applications, including 
discrete transformations such as discrete Hartley transform 
[ 1 I], discrete cosine transform (DCT) 1141, fast Fourier trans- 
form (FFT) [25], [26], Chirp Z transform (CZT) [44], solving 
eigenvalue and singular value problems [IS], 13 I],  1721, 
digital filters [21], 1221, 1801, Toeplitz system and linear 
system solvers 1471, [48],[52], 1741, 1.531, and Kalman filters 
[771. 

CORDIC Algorithm 

The basic concept of the CORDIC computation is to 
decompose the desired rotation angle into the weighted sum 
of a set of predefined elementary rotation angles such that the 
rotation through each of them can be accomplished with 
simple shift-and-add operations. For this, we let the rotation 
angle, 0, be represented as: 

where the iPrh elementary rotation angle, am(i) is defined by: 

In the above equations, m = 1, -1, and 0 corresponds to, 
respectively, the rotation operation in a circular coordinate 
system, a hyperbolic coordinate system, and a linear coor- 
dinate system. The norm of a vector [ x y 1' in these three 
coordinate systems are defined as w. The term 
{mu( i ) ;  0 5 i I n - 1; } is a sequence of +Is which deter- 
mines the rotation angle, and the modes of operations. The 
term { s(m,i) ; 0 I i I n - 1 ) is a non-decreasing integer shift 
sequence which is usually determined in advance. 

With these definitions, the basic CORDIC algorithm can 
be described as follows: 

Initiation: Given x(O), y(O), z(0). 
For i = 0 to n - I ,  Do 
I* CORDIC iteration equation *I 

I" Angle updating equation "I 
z(i+l) = z(i)  - p i  a,(i) 
End i-loop 

I* Sca 

i=U 

(4) 
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Linear Rotation 
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I .  Trajectory ofcirculur (a). linear (b), and hyberbolic (c )  COR- 
DIC rotutions. 

The purpose of the scaling operation (Eq. 5) is to make 
sure that after rotation, the final coordinate [ xf y]'  has the 

same m-norm as the initial coordinate [ x(0) ~ ( 0 )  1'. That is, 
(xf+ + m(yjl2 = x2(0) + my2(0) m = - I ,  or I 

(For m = 0, &(n) = 1. No scaling operation is needed). 
From Figure l(a)-(c), it is clear that the rotation changes 

the norm of the vector. Hence this scaling operation is needed 
to move the end point of the final vector back to the desired 
trajectory (on the dotted line). A main research issue, to be 
discussed later, is to reduce the computation overhead due to 
the scaling operation. 

Modes of Operations 
The set of p; ( A l )  in the CORDIC algorithm determine 

the rotation angle depending on the modes of operations. The 
CORDIC algorithm can be operated in either a vector rotation 
mode, or an angle accumulation mode. 

In the vector rotation mode, which is also known as the 
vectoring mode [82], or forward rotation mode [44], the 
desired rotation angle 8 is given. The objective is to compute 
the final coordinate [,y yf]'. Usually, we set z(0) = 8 at the 
beginning. 

After n iterations, the total angle rotated is: 

Clearly, we should choose p; = sign of ~ ( i )  in Eq. 4 such that 

after the i'h iteration, I z( i+l)  I < I z(i)  I .  Eventually, we want 
to make Iz(n)l 4 0. 

For many DSP problems, 8 is known in advance. Often, 
the same 8 will be used over and over. In these situations, one 
may choose to evaluate Eq. 4 in advance (off line), and store 
the corresponding set of p;, instead of 8, in the memory. A 
particular advantage is that there will be no need to implement 
the angle updating formula (Eq. 4), resulting in a one-third 
cost saving of hardware. 

In the angle accumulation mode, which is also known as 
the rotation mode [82], Y-reduction mode [lo], or the back- 
wurd rotation mode [47], the desired rotation angle, 8, is not 
given. The objective is to rotate the given initial vector 
[x(O) y(O)]' back to the x-axis so that the angle between them 
can be accrued. For this purpose, we let z(0) = 0, and select 
p; = sign of x( i ) .  y ( i ) .  (In the circular rotation case, an alter- 
native criterion to select pi = - sign ofy(i) will guarantee 
xf> 0 regardless the sign of x(0). In summary, the selection 
criteria for pi are: 

(7) 
sign of z(i)  vector rotution mode 

= { - sign of x(i) .y(i)  angle accumulation mode 

Note that the set of {pi ; i = 0 to n - 1 } can be regarded as an 
alternative representation of the rotation angle 8. Hence, even 
in the angle accumulation mode, often it is not necessary to 
explicitly compute 8 using Eq. 5. 

Shift Sequence 

The shift sequence { s(m,i); 0 I i 5 n-1 ) determines the 
convergence of the CORDIC iteration, as well as the mag- 
nitude of the scaling factor Km(n). Since there are only n finite 
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elementary rotation angles { am(i); i = 0, n - 1 }, it is impos- 
sible to represent arbitrary rotation angle 8 without error. Let 
us define an angle approximation error as: 

In the vector rotation mode, since z(0) = 8, from Eq. (6), we 
have 6 = z(n). In the angle accumulation mode, one can easily 
show that: 

tan-'y(nyx(n) rn = + 1 
6 =  y(n)/x(O) r n + O  1 tanh-ly(n)/x(n) rn = - 1 

The effects of the angle approximation error and the rounding 
error on the accuracy of the CORDIC computation have been 
analyzed [43]. In general, it is desired that for any given 
rotation angle, 8: 

I 6 I 5 a,(n - 1) (9) 

This condition imposes two constraints on 8. First, the cor- 
responding set of elementary rotation angles must satisfy: 

Next, 8 must lie within the domain of convergence. That is, 

Walther [82] has proposed a set of shift sequence for each of 
the three coordinate systems. In particular, for rn = 0 or I ,  
s(rn,i) = i, 0 I i 5 n - 1. For rn = -1, s(-l,i) = I ,  2, 3 ,4 ,  4, 5 ,  
..., 12, 13, 13, 14, ..., 

The purpose of repeating elements { 4, 13, 40, . . . ] in the 
hyperbolic coordinate is to assure that Eq. 10 is satisfied. 
Along this line of research, X. Hu et al. [40] have proposed a 
method to expand the range of A m u p .  

Scaling Operation 
The multiplication of l/Km(n) in the scaling operation (Eq. 

5 )  imposes significant computation overhead on the CORDIC 
algorithm. This is because to perform a multiplication, n 
shift-and-add operations will need to be performed. For- 
tunately, if we constrain Ipil= 1, and assume [ s(rn,i)) is given, 
Km(n) can be computed in advance. As such, various techni- 
ques have been proposed to reduce computation overhead. 

A first approach is to convert I/K,(n) into a canonical 
sign-digit representation [5 I]:  

JULY 1992 

- r - ~ -  -r 

P 

where ~p = f l ,  and ip are positive integers. Multiplication 
with I/K,(n), then will take P-1 shift-and-add operations. 
Using the canonical multiplier recoding method [5 11, the 
value of P can be reduced to bn,  where b is the number of 
bits in the internal registers. On the average, PI= bA. 

A second approach is to represent l/Km(n) as a product of 
Q factors such that: 

. Q  

where I < 2-b. Given 
l/Km(n), similar to the first method, the design goal is to 
minimize Q. It has been observed [4], [37] that if some of the 
elementary rotation angles are repeated, the resulting scaling 
factor, Km(n) can be approximated by a power of 2. Thus the 
scaling operation can be accomplished with several addition- 
al (repeated) CORDIC iterations with a simple shift operation 
at the end. Delosme later suggested use of a simulated anneal- 
ing technique to identify the best set of elementary angles to 
repeat 1181. Deprettere et a1 [22], [20] proposed a variant of 
that method in which some product terms have the form 
( 1  + q 2-jk + ~ k 2 - j ~ )  where yk = f 1 for a three-term product, 
and yk = 0 for a regular two-term product. 

In singular value decomposition and eigenvalue decom- 
position problems, an important operation is to diagonalize a 
2 x 2 matrix with simultaneous pre- and post- rotation opera- 
tions. Observing that the scaling factor is K i ( n )  in this case, 
Cavallaro and Luk [ I O ]  have proposed a simple scheme 
(discussed later) to perform exact scaling. This method was 
recently studied and enhanced by Delosme [18], [19], and 
Yang and Bohme [84]. 

= f I ,  i, are positive integers, and I 

ARCHITECTURAL DESIGN 

Basic CORDIC Processor 

A basic CORDIC processor should contain function 
modules which realize (a) the CORDIC iterations specified 
in Eq. 3; (b) the angle update iteration specified in Eq. 4; and 
(c) the scaling operation specified in Eq. 5. The functional 
block diagrams for each of these operations are straightfor- 
ward (Fig. 2). 

The modules in Fig. 2a support a single CORDIC iteration. 
It contains dual barrel shifters and dual adders to facilitate the 
updating of both x ( i )  and y ( i )  simultaneously. The number of 
bits to be shifted is controlled by the shift sequence {s(rn, i ) ) .  
The shift sequence can be stored on chip using ROM (read- 
only memory) or RAM (random-access memory), or 
generated on chip with a simple counter and additional con- 
trol devices. The addsubtract operation is determined by the 
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filters. It enables a fine grain pipelining, which helps reduces 
the pipelining latency. For Toeplitz system and linear system 
solvers, it also facilitates saving total computation time by 
almost 50 percent [41]. It was called implicit rotation when 
applied to the eigenvalue decomposition problem [ 181. 

IMPLEMENTING ALGORITHMS 

In this section, we will illustrate how to utilize a CORDIC 
processor array to implement digital signal processing algo- 
rithms. Our approach is to reformulate existing DSP algo- 
rithms so that they are suitable for implementation with a 
CORDIC processor array performing circular, or hyperbolic 
rotation operations. The linear rotation operation will not be 
emphasized because they can also be implemented, more 
efficiently, with MAC based processors. There usually exists 
a more efficient scheme for implementing a particular func- 
tion. However, the utility of the CORDIC based architecture 
lies in its generality andflexibility. With these in mind, we 
will survey three categories of DSP algorithm: 

(a) Linear transformations, including discrete Fourier 
transform, Chirp-Z transform, discrete Hartley transform, and 
fast Fourier transform; 

(b) Digitalfilters, including orthogonal digital filters, and 
adaptive lattice filters; 

(c) Matrix based digital signal processing algorithms, 
including QR factorization, with applications to Kalman fil- 
tering, linear system solvers, Toeplitz and covariance system 
solvers, with applications to least square deconvolution, and 
eigenvalue and singular value decompositions with applica- 
tions to array processing. 

Linear Transformations 

Discrete Fourier Transform (DFT) 

0 < n 5 N -  I } ,  its 
O S k 5 N -  1 1  isdefinedas: 

Given a complex-valued discrete sequence { X ( n ) ;  
discrete Fourier transform { Y(k);  

-j2xO -j27rk -j27r(N- 1 )k  __ __ 

Y(k)  = X(O)e N + X (  1)e + . . . + X(N-l)e  N 

for 0 5 k I N - 1 .  To avoid notational confusion, in this 
article we use x( i ) ,  y ( i )  to denote the rotation coordinates in 
the CORDIC algorithm, andX(n), Y(n)  to denote the time and 
frequency domain sequences in the DSP algorithm. We note, 
however, that in most DSP literatures, the time domain se- 
quences are denoted by lower case letters, e.g., x(n) .  Eq. 14 
can be reformulated in a recurrent algorithm format to 
facilitate implementation with a CORDIC processor array. 
The algorithm is as follows: 

Initiation: Y(0,k) = 0 for 0 I k I N - 1 
For k = 0 ,  1, ..., N-1 Do 
Form = 0, 1 ,  ..., N-1 Do 

End m-loop 
Y(k)  = ~ Y(N*k) /* scaling operation */ 

K ,  ( n )  
End k-loop 

(Note that K i ( n )  is defined in Eq. 5.) 
In Figure 4, the sequence { X ( n ) ;  0 5 n 5 N - 1 ] is taken 

from the left end of this processor array. Each X(n) ,  which 
contains two real numbers x,(n) and xi(n), will be propagated 
from the current processor to the next nearest neighbor 
processor in a pipelined manner. Since X(n)  is not to be 
modified during propagation, they can be piped at a rate of 
to time unit (1 clock cycle) per stage. Each of the N CORDIC 
processors in this processor array will be responsible for 
evaluating a particular Y(k) .  This implies that N different 
rotation angles { 2xmWN; 0 2 m 5 N - 1 } must be stored in 
each processor. Since each of each rotation angle requires n 
bits to store, the total storage requirement, including the s 
scaling iterations, will be nN+s bits. 

As Despain pointed out [25] ,  there is no need to perform 
scaling operation in the DFT algorithm. This is emphasized 
by placing Kl(n)  in front of the rotation matrix. In doing so, 
the output will be Ki(n)Y(k) ,  which is a scaled version of the 
desired output, Y(k). Hence, there is no need to perform the 
scaling operation, which takes s iterations, for each of the N 
CORDIC rotation operation in the m-loop. Instead, only one 
final scaling operation is needed to compute Y(k)  at the end 
of the m-loop as listed in the algorithm. With this scheme, the 
average scaling overhead is reduced from s shift-and-add 
scaling iterations per CORDIC rotation down to s/N shift- 
and-add scaling iterations per CORDIC rotation. Conse- 
quently, the computation delay for each Y(k)  will be 
(nN+s)t, time units; and the total computing time will be 
(nN+s+N-l)t, time units. However, since the scaling is done 
at the end, the dynamic range of Y(m,k) will be increased by 
a factor of Ki(n) ,  whose magnitude is usually less than 2.  To 
avoid overflow and loss of accuracy, one extra bit is needed 
to store the intermediate result, Y(m,k). 

Discrete Hurtley Transform (DHT)  
The Discrete Hartley transform is proposed by Bracewell 

[6] as an alternative to discrete Fourier transformation. It has 
the following formulation: 
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4. A pipelined CORDIC DFT array (a). X(m) will be propagated from processor i to processor i+l every nt, time units. Scaling is done 
only once in each processor ufter N CORDIC rotations are all conipleted. Each processor will store the same set of N rotation angles in 
the form of {p,). Which angle to use in the mth iteration depends on k. Pipelined CZT array (b). The rotation angle and composite scal- 
ing factor will be,fed into each basic CORDICprocessor, one by one. Each processor will cycle through n+s cycles before feeding its 
result to the next processor. The input datu re applied to each processor in parallel. The output is available at processor N-1. 

Initiation: Y(0,k) = 0 for 0 5 k 5 N - 1. 
F o r k  = 0, 1, ..., N-I ,  Do 
Form = 0, 1, ..., N-1, Do (15) 

n=O 

where { X ( n ) )  and { Y ( k ) )  are both real sequence. To realize 
1v DHT in a CORDIC based processor array, we set the initial 

coordinates of the CORDIC algorithm to (X(n), X(n)). That 
is, x(0) = y(0) = X(n), and we rotate through an angle of 
27Ckrl/N. Each term in the above summation will appear as yy. 
Again, similar to the case of the DFT, only one scaling 
operation is required for every Y(k). The recurrent formula- 
tion of the DHT is as follows: 

End m-loop; 

I* scaling operation *I Y(N,k) Y(k) = ~ 

Kl@) 
End k-loop 

JULY 1992 IEEE SIGNAL PROCESSING MAGAZINE 23 

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore.  Restrictions apply. 



Note that the DFTarray presented in Fig. 4 can also be applied 
to the DHT with x(0) and y(0) tied together. A systolic array 
implementation of the DHT based on the CORDIC processor 
has been reported recently [ 1 I]. 

Chirped Z-Transform (CZT) 
The Chirped Z transform evaluates the Z-transform of a 

discrete, complex valued sequence { X ( n ) )  at the points 
:k = A l V  for k = 0, 1,  . . ., K-1, where W = Woe-Jcp0, and 
A =A,e"" with WO, A(,, (po,  and 0o being real numbers. 
Hence, 

k 

N- I N- I 

Traditionally, CZT can be evaluated with fast Fourier trans- 
formation using O(N+K-l)I o g(N+K-1) operations [66]. 
However, when K << N, direct evaluation of Y(ZQ would be 
more efficient. 

A CORDIC processor array of the CZT was proposed [44] 
which is based on the following recurrence algorithm for- 
mulation: 

Initiation: Y(0,k) = 0 for 0 I k I K - 1. 
Fork  = 0, I ,  ... K-1 Do 
Form = 0, I, ..., N-I Do 

Xr(N- 1 -m) 
+[ X;(N- 1 -m) 1 

End m-loop 
End k-loop 
Output: Y(k) = Y(N,k) 

I n  each iteration of the m-loop, each Y(m,k) will be multiplied 
with a scaling constant, A;'$. This scaling constant can be 
combined with the scaling operation in the CORDIC algo- 
rithm. That is, instead of multiplying l/K~(n), and then fol- 

lowed by A,' M/3, we will multiply acomposite scaling factor, 

A,' $JKl(n). A side effect, however, is that when CZT is 
realized with a CORDIC processor array, different Y(k) may 
need different numbers of CORDIC iterations for scaling 
during each m-loop. This will cause scheduling difficulties in 
a pipelined implementation. On the other hand, it  also 
presents a special opportunity to further reduce the number 
of CORDlC iterations using a,forwardangle recoding (FAR) 
method (441, (461. 

Briefly speaking, in the FAR method, the internal repre- 
sentation of the rotation angle (p;) can take integer values 

5. Signa/,flow graph of the FFT (decimation in time) algorithm 
(a).  CORDIC implementation (b) of the DIT FFT algorithm in (a).  
Each bo.w is a CORDICprocessor. Thick arcs in (a )  are realized 
bv the shaded box in (b). 

other than f l  . Whenever p; = 0, the corresponding CORDIC 
iteration can be skipped. Hence, under the constraint of 
convergence condition (Eq. 9), the objective of FAR is to 

minimize C, I pi I . As such, the total number of CORDIC 

iterations can be minimized. Of course, according to Eq. 5 ,  
setting certain p; = 0 will cause the scaling factor, K1 (n). to 
be dependent on the rotation angle. Specifically, using FAR, 
each rotation angle, 8, will have a different scaling factor. 
However, the radial scaling factor,A,' wk, is dependent on the 
rotation angle (indexed by k) anyway. Hence, a different 
K l ( n )  for each different index, k, will pose no extra computa- 
tion or storage overhead. The architecture of a pipelined 
CORDIC processor array with forward angle recoding is 
illustrated in Fig. 4b. 

n- I 

r = O  

Fast Fourier Transformation (FFT) 
The fast Fourier transformation is perhaps the most fre- 

quently used DSP computing algorithm in modern digital 
signal processing systems. Let N be the total number of points 
in the DFT.  If N = N1.N2, then, we may let index 
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6. Pipelined CORDIC FFT array [26]. 

n = nl + Nin2, with 0 I n i  <=NI - 1, and 0 I n2 I N2 - 1 .  
Note that 

Therefore, for 0 I: k I N -1, 

I f  N I  = 2, and N2 = N n ,  the above equation becomes: 

In other words, the original N-point DFT problem now be- 
comes two N/2 point DFT sub-problems for each Y(k). 
Recursively applying this procedure will lead to the popular 
radix-2 FFT algorithm. 

The basic operation in a FFT algorithm is called a Butterfly 
operation, which may have several different formats. For 
example, consider the decimation-in-time Butterfly opera- 
tion: 

2nk 
N 

2xk 

C' = C + D.c~p(-j-) 

D' = C - D cxp(-j-) I N 

and the decimation-in-frequency Butterfly operation: 

C'= C +  D 
D' = (C - D) exp( -Jy ) 

2xk 

Note that C, D, C' and D ' are all complex numbers. The above 
equations require a complex number multiplication (with a 
uni-modulus complex number), and two complex number 
additions. The complex number multiplication can be done 
with n+ s CORDIC iterations and scaling iterations. The two 
complex additions will need just one more clock cycle. 

For small N, a FFT computation can be realized directly 
with a network of CORDIC processors (Fig. 5). A signal flow 
graph of an 8-point decimation-in-time FFT [66] is shown in 
Fig. 5a. In Figure Sb, each Butterfly operation is replaced by 
a rectangular box representing a CORDIC rotation followed 
by a complex addition or subtraction. To see how the structure 
in Figure Sb is obtained from Figure Sa, we highlighted the 
corresponding Butterfly operation in the last stage in Figure 
Sa, and the CORDIC processor in the shaded box in Fig. 5b. 

For large N, the complicated global interconnection re- 
quirements unfortunately make it difficult to implement effi- 
ciently with a pipelined VLSI array, without severe 
performance penalty [60]. Despain [26] has reported an im- 
plementation of a 16-point FFT building block using a linear- 
ly array of specialized hardware to minimize the number of 
addsubtract stages. A block diagram of that processor is 
shown in Fig. 6. This processor array is able to achieve a 
pipelining period of 1. Also, the number of delay elements 
vary from stage to stage. It has N / 2  delays in the first stage, 
NI4 in the stage, and so on. 

Digital Filtering 

Most of the existing digital filtering structures are imple- 
mented with multiply-and-add operations. However, the 
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7. Basic rotor in orthogonal digitalfilters. 

CORDIC structure is useful in implementing a large class of 
digital filtering functions with some unique advantages. In 
particular, two types of digital filtering structures will be 
discussed in this section: the orthogonal digitalfilter (ODF), 
based on circular rotations; and the lattice filter (LF), based 
on both hyperbolic and circular rotations. In fact, the basic 
building blocks of these two types of filter structures are 
intimatedly related. 

Orthogonul Digitul Filter 
An orthogonal digital filter is a digital filter of which the 

oLerall numerical computation at each sample instance can 
be described by an orthogonal or unitary matrix. There are a 
number of advantages of an ODF [27] compared with other 
filter structures. First, it has low sensitivity both in the 
passband and the stopband, and is invariant under frequency 
transformation. In addition, it is stable in spite of parameter 
quantization. It is also free from the limit cycle and ovefflow 
oscillations. Finally, the pipelining, modular structure also 
makes it viable for VLSI implementation. 

The basic building block of an orthogonal digital filter is 
the so-called rotor (cf. Fig. 7)- a circular rotation unit which 
realizes the following two-port transfer function: 

wherejand y are inputs, and x, and g is the output. 
Gray and Markel [36] proposed a cascaded structure 

together with a tapped-sum output to realize a given transfer 

based on the Schur algorithm to realize a uniform two-rotor- 
per-section ODF for stable transfer functions (Fig. 9). It was 
reported later [12] that the Schur algorithm is numerically 
sensitive to rounding error, and a remedy was developed. A 
different remedy using state space realization has sub- 
sequently been advanced by Desai [24]. Vaidyanathan [80] 
has presented a unified framework showing that a digital 
Lossless Bounded Real (LBR) two port pair can be realized 
with two plane rotations. This structure is also a normalized 
version of the series adaptor for wave digital filters [32]. 

Adaptive Lattice Filter 
Whereas an ODF is used to implement a given transfer 

function as a fixed-weight digital filter, a lattice filter has 
found most applications in adaptive signal processing [34]. 
In other words, most popular lattice filtering algorithms have 
been focused on the adaptive updating of the reflection coef- 
ficients so that it is able to keep track of the time varying 
parameters in the incoming signal. The building block of a 
lattice filter is a hyperbolic rotation unit (cf. Fig. IO), which 
can be described as: 

function. Henrot and Mullis [38] proposed a pr0ce;dure based on 
the generalized Levinson algorithm to realize an ODF. Dewilde 
and Deprettere [271 based on an embedding technique, 
developed several pipelinable, cascaded ODF structures. In 
summary, three types of pipelined building blocks, based on 
different inter-connections of one or more rotors have been 
proposed 1281 (cf. Fig. 8). Any transfer function can be realized 
by a of these three building blocks, 8. Three gpes of basic structures of pipelined orthogonal digital 

Rao and Kailath [70] proposed a synthesis procedure filter [281. 
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In the linear prediction theory, k in both of these equations 
are known as the reflection coefficient, or sometimes the 
PARtial CORrelation (PARCOR) coefficient. To ensure 
stability of the filter, the magnitude of every reflection coef- 
ficient must be less than unity. That is, Ikl < 1. A basic 
cascaded lattice filter structure, implemented with Hyper- 
bolic rotation CORDIC processors, is shown in Fig. 1 I .  If the 
input y ( t )  is an auto-regressive random process of order p, 
then the output of theprh stage,b(r) and b,(j) will be two white 
noise random processes. 

The rotation angles { Bi; 1 I i I N ]  can be estimated in a 
batch processing manner or a data adaptive manner. If the 
correlation function ( R Y ( n ) )  of the input ( y ( t ) )  is available, a 
Toeplitz system equation called the Yule-Walker equation 
can be solved to find out the N reflection coefficients; or 
equivalently, the N hyperbolic rotation angles. We will show 
later that a CORDIC processor array is able to solve a Teoplitz 
system of equations efficiently 

If the sample data sequence ( ~ ( t ) )  is to be used, we may 
compute the reflection coefficients using, say, the Burg's 
maximum entropy method [9]: 

c .r;( t' ) . h; (r/-  1 ) 

t '  I '  

If we want to update k;(t) at each time instant, two classes of 
adaptive lattice filtering algorithms are available to do so: the 
gradient lattice filters (GLF), and the recursive least square 
lattice filters (RLSLF) [34]. The GLF algorithms updating the 
reflection coefficients use various gradient based formula- 
tions. For example, the reflection coefficient k;(t+l) at the 

i'" stage at time r+l can be computed as: 

where a; is the step size. The RLSLF algorithms update the 
reflection coefficients using time and order updating by recur- 
sively solving a least square problem. Many fast RLSLF 
algorithms have been reported taking advantage of the special 
structure between successive data vectors. A comprehensive 
survey on adaptive lattice filter algorithms can be found in 
[34]. In  Fig. 12, several building blocks of these lattice filter 
structures are shown. 

Although the resulting prediction lattice filter structures 

- Sinh e 

Cosh 

~ 

IO. Basic lattice filter section. 
__ 

are suitable for implementation with a CORDIC processor 
array, the reflection coefficient adaptation algorithms them- 
selves usually can not be easily implemented. Previously, 
Ahmed et al. [2] had implemented a CORDIC based ladder 
filter for speech analysis using a normalized lattice algorithm. 
Sibul and Fogelsanger [72] have proposed a modified COR- 
DIC algorithm to implement RLSLF. Chen and Lin [13] 
proposed a dedicated hardware implementation of a normal- 
ized RLS lattice algorithm which they claim to be more 
efficient than CORDIC implementation. 

Recently, Hu and Liao [49] have proposed a CORDIC- 
based adaptive lattice filtering (CALF) algorithm. CALF is a 
simplified gradient-based algorithm that is able to directly 
update the hyperbolic rotation angle without explicitly update 
the reflection coefficients. Note that there are only 2'* possible 
combinations of {pi; pi = f l ,  0 I i I n-1 ] . Hence, at most 

2n distinct rotation angles can be represented using the given 
set of shift sequence. 

Let us order these 2n angles in an ascending order, and 
label each of them with an index I, 0 I I I 2n - 1, such that: 

With this set of indices, the updating formula of CALF can 
now be easily described: 

I / .  Basic 1atticr.filter structure implemented with hyherbolic rota 
tion CORDIC processors. 
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- 
12. Variance normalized pre-windowed least square lattice predictor 

,filter ((a), see [34]). Variance normalized sliding windowed 
coinriance lattice predictor filter (b). Note that the second stage is a 
rotor implemented with circular rotation. Variance normalized pre- 
windowed time and order update lattice predictor filter (c). 

I,(t+l) = Ik(f) + sign of (fk(t).hk(t)) (22 )  

When s(-1,k) = k+l, the corresponding set of (pi) can be 
found directly using a simple up/down binary counter. This 
makes the implementation of CALF extremely simple com- 
pared with previous approaches. In Figure 13, a single sec- 
tion of the CALF structure is depicted where the adaptation 
of the rotation angle is realized with a simple up/down binary 
counter. 

Matrix Based DSP Computing Algorithms 

Matrix based linear algebra computing algorithms such as 
linear system solvers, least square system solvers, QR fac- 
torization, eigenvalue or singular value decompositions arise 
quite often in modem digital signal processing applications. 
For example, linear system solvers can be used in covariance 
system equations in the linear prediction problem; QR fac- 
torization can be used in least square adaptive filter applica- 
tions; and eigenvalue decomposition or singular value 

decomposition have been used in high resolution spectrum 
estimation, array processing and related problems. In this 
section, we will present CORDIC based processor array 
structures for implementing these matrix related DSP com- 
puting algorithms. Since we have to deal with portions of a 
matrix quite often, we shall adopt the following conventions 
to simplify the notations used in the algorithms: A(1:5,:)  will 
be the submatrix of A containing the first five rows, and 
A(2:p,3:5) will be the submatrix of A containing elements in 
the intersection of the second to thepfh rows with the third to 
the fifth columns. 

Elementary Row and Column Operations 
The purpose of the elementary row operation is to rotate 

corresponding pairs of elements in two row vectors so that 
one element in the second vector is annihilated. (For column 
vectors, a column operation can be performed by post-multi- 
plying a 2 x 2 matrix.) Let A(i , : )  and A(j , : )  be the irh and the 
j f h  rows of the A matrix. Then, the row operation is equivalent 
to pre-multiplying these two row vectors by a 2 by 2 matrix 
M: 

We may choose M to be a unitary matrix so that circular 
rotation can be applied. In this case, we denote M by C(ij, 
ACj,l)) to emphasize that A(j. l )  is to be nullified, and to 
perform the row operation between the ith and the j‘“ rows of 
the A matrix. It is easy to verify that: 

L J 

with 0 = -tan-’[ A(j ,  l ) /A( i , l ) ] .  Similarly, one may choose M 
so that a hyperbolic rotation between elements of A(i , : )  and 
A(j,:) are performed. In this case, we denote 

1 c o s h v  s i n h v  
s i n h v  c o s h v  M = H ( i j , A ( j , l ) )  = 

with y~ = -tanh-’[ A( j , l ) /A ( i , l ) ] .  
The row operation can easily be realized with a doubly 

pipelined CORDIC array (Fig. 3c). A(i,k) and A(j,k) will be 

I I 

Up/Down Counter 

I 
13. CORDIC adaptive lattice filter (CALF) [49]. 
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loaded to the local memory of the kfh processor initially. The 
head processor will perform angle accumulation operation by 
evaluating p; in the if” iteration. The computed pj then will be 
propagated to each remaining processors. Note that we do not 
have to wait all the pis are computed before initiate the vector 
rotation operations in the remaining processors. Thus, the 
second processor will be able to commence its operation only 
one clock cycle (to) behind that of the head processor. 

QR Factorization 
In QR factorization, a matrix is factorized into the product 

of an orthonormal matrix and an upper triangular matrix. This 
operation can be accomplished by a sequence of circular row 
operations to nullify elements below the main diagonal of the 
matrix. The algorithm is described as follows: 

Initiation: Given a 

Fori = 1+1 top Do 

Output: U(1,:) =A@’([,:) 
End 1-loop 

A triangular array of CORDIC processors (Fig. 14) is capable 
of performing the QR factorization algorithm effectively. 

Examnple: Adaptive Antenna Nulling 
To illustrate the DSP applications of QR factorization, 

consider the least square adaptive antenna nulling problem: 
Let the row vector x(t) = [xl(t), x2(t), ...,xp( T)] ] be the array 
input at time t; and X(r) = [ x‘(t) <(+I)  . . . ~ ‘ ( 0 )  1‘ be the data 
matrix. (Here, the superscript “t” refers to the matrix (vector) 
transpose. The index “(I)” refers to the tth time instant.) The 
objective is to find a p by 1 coefficient vector E([) for each t 
to minimize the square error: 

t f 

E(r) = c I ( f )  l 2  = c [ &’) - X(tr)E(tt$ (26) 
t’=O t’=O 

where g(r) = d(t)  - X(t)_W(f). Our approach is to apply QR 
factorization to X(t) such that: 

- -  

L A  

where Q(t) is an orthonormal matrix, U([ )  is a p by p upper 
triangular matrix, and 0 is a (t+ 1 -p) by p zero matrix. Pre-mul- 
tiplying the matrix Q(t) on g(t), we have: 

JULY 1992 

-~ ~ 

I I . vector rotat ion 

Al 
14. q-by-q triangular CORDIC array for QR factorization. The 
matrix A is p-by-q (usually, p 2 y). 

- Z(r) = Q(t)g(r) - Q(t) X( t )Y(r )  = [z‘”] - [ ‘f’]._W(r). 
go) 

(27) 

Thus, the least square solution of E(t) can be found as: 

- k(t) = rr’(t).?(t) 

Assuming that a new (row) data vector x(t+l) = [xl(t+l) 
x2(1+1) ... xp(f+l)] is now received. Our goal is to update 
- ~ ( t )  to k(t.1). This can be accomplished by performing p 
row operations between each row of the U(t)  matrix and the 
x(t+l) data vector to nullify E(f+l). This procedure will lead 
to an updated upper triangular matrix U(r+l), and the updated 
coefficient vector: 

Rader et a1 [69] have implemented a wafer scale linear 
CORDIC processor array called MUSE (Fig. 1.5) to imple- 
ment this adaptive nulling algorithm. They incorporate a 
forgetting factor into the error formulation so that the scaling 
operation does not have to be exact. As a result, they achieve 
significant savings in the scaling operation. 

Much research has been reported on using triangular sys- 
tolic array for QR factorization [3.5], and recursive least 
square (RLS) processing [62]. Recently, Cioffi [ 1.51 reported 
a fast QR-RLS algorithm which requires O(N) rotations in- 
stead of O(N2)  rotation. 

Example: Kulman Filtering (KF) 
QR factorization can also be applied to solve the Kalman 
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U ( 3  3 U(3 4 u ( 3  5 

Processor in the shaded area has been "lolded" back 
so that all the processors can be kept busy al l  lhe  time I 

ip ----L 

15. Linear CORDIC for adaptive antenna nulling (MUSE). 

filtering problem. A least square formula due to Paige and 
Saunders [67] embedded the KF recursion formula into a 
matrix triangularization formulation: 

m,here the definitions of each block entries can be found in 
[60]. Sung and Hu [77] has previously proposed a multiple 
VLSI systolic array implementation of the square-root for- 
mulation of the Kalman filter algorithm using a 32-bit COR- 
DIC data path chip. 

Linear System Solver 

systems of equations: 
Given a NxN matrix A, and a Nxl vector b, a linear 

arises quite often in digital signal applications. Conventional 
methods involves the LU factorization of the A matrix, fol- 
lowed by a back-substitution step. On the other hand, Eq. (30) 
can be rewritten as [ A  b] [x' 1]'= 0. Hence the solution 
vector lies within the null space of the (A b] matrix. To find 
&explicitly, consider the triangularization of the [A bl'matrix 
which is embedded in a (2N+l)x(N+l) matrix: 

where "*" are terms which are of no concern. If QR factoriza- 
tion is used, M will be an orthonormal matrix. If Gaussian 
elimination is used, M will be a lower triangular matrix. Note 
that the last row of the M matrix in above equation is such 
thatp'A' + 4.b' = 0. Hence, the solution to Eq. 30 can be found 

as:&=--. 
- 1  
4 

This algorithm is a slightly modified version of the classi- 
cal Fadeev algorithm. As a variation of the above algorithm, 
it is suggested [52]  that when A = U' U and A-' = L'L are 
both given, the above augmented matrix can be modified as: 

Now we have p'U + q b' = e', and = p'L. Therefore, 

Toeplitz System and Covariance System Solvers 
In many advanced signal processing algorithms, the coef- 

ficient matrix A in the linear system of equations has a special 
low displacement rank [33], [55]  structure. Displacement 
rank is a measure of closeness between a given square matrix 
and a certain Toeplitz matrix. A Toeplitz matrix has a struc- 
ture that all elements along the diagonal direction are the 
same. That is, 

t . .= t i+=tk  for-N+l < k < N -  I,and 1 I i , j < N  ' J  

For example, a 4x4 Toeplitz matrix Tis: 

A matrix has a structure which is close to a Toeplitz matrix if 
it has low displacement rank. Let us denote a shift matrix as: 

0...0 0 

Z=[l,v-, 0 1  

The (+) displacement rank of a matrix A, denoted by a, is 
then defined as the rank of a displaced matrix, A - ZAP. In 
fact, the displacement matrix can be factorized (using, say, 
LDU factorization) into the form: 

A - a2 = GCG' = G,G', - G,G; (33) 

where C = diag [I,, - l ~ c - ~ ] ,  and G N X ~  is called a generator 
matrix because the original A matrix can be recovered from 
G according to the equation: 
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(34) 

where L@;) = [ Ilk 1 is a lower triangular Toeplitz matrix with 
gi being its first column. If  the generator. G. is also permis- 
sihlr, that is. there exist an ax1 vector p such that Gp = 

[ I 0 . . .  0 1'. then thc L L' factorization of A-' can also be 
computed explicitly. Any generator matrix can be made per- 
missable by adding two more redundant vectors 1611. With 
the generator matrix. a fast Cholesky factorization algorithm 
then can be applied to  compute the U'U Cholesky factoriza- 
tion of the A matrix as well as the L L' Cholesky factorization 
of the A-' matrix, using O(aN')  operations instead of O ( N )  
operations. Thus. this method will be very appealing when 
u < < N :  

3 

Initialization: Given N, a, p ,  Q, and the permissible 
generating matrix cma. Let F( ' )  = [ p G ( I : ~ , ~ : N )  I, 
U(1,1:N)=C(l,l:N),andL(l,l:N) =[pi 0 ... 01. 

Form = I to N Do 
/* Perform Circular rotation on the first p rows; and the 

remaining a-p rows of F separately.*/ 

. F("'( 1 :p, 1 : N+ 1 ) 

' F(")(pi l :a , l :Nil)  
/* Perform Hyperbolic rotation on the first and the 

p+lrh rows of F*/ 

output: [Urn, 1:m) U(m,m:N)] 
I* Right shift the first row ofthe F matrix */ 
F ( m + ' ) ( ~ , l : ~ + l )  = [o ~ r n , ~ : m >  ~ ( m , m : ~ - l ) l  
End m-loop 

E.miipIe: Fcr.ct L>rc,ori~,olution Algoritlim [47/ 
Consider ;I discrete time, causal linear system with known 

finite impulse response sequence [ h(k)).  random input se- 
quence { u(k)] ,  and random observation noise sequence 
{n(k)] .  Let { z(k))  be the output of this system, then: 

(35) 

for k = 1.2, ..., N. Given [ h(k)], and [ z(k)], the objective of 
deconvolution i \  to recover the input { u(k)) in a least square 
sense. The solution requires the solution of a linear system of 
equations of the form: 

2 where V' = E/u'(k)/, (5 = E/n'(k) / ,  and H is a lower trian- 
gular Toeplitz matrix with i ts  first column being 
[h(O) /I( 1 )  . . . h(N- 1 )]I. It is easy to verify that a = 2, p = 2. 
Furthermore. since only one row of the U matrix (U'U fac- 
torization of I-) and of the L matrix (LL' factorization of A-') 
are computed in each iteration, the linear system solver 
described in section IV.3.4 can be applied to compute w 
explicitly. Note that due to the structure of the C matrix, we 
have a =2, p = 2. Hence, there is no hyperbolic rotation 
involved. Moreover, the generator matrix 

1 v h ( 0 )  VIZ( 1 ) . . . vh(N-I)  
0 0 ... 0 

L J 

is permissible, with p = [0 110 1'. 
These observations lead to the following fast deconvolu- 

tion algorithm, where the solution, w, is computed explicitly: 

Initiation: 

Form = I t o N D o  
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Eigenvalue and Singular Value Decomposition 

Eigenvalue decomposition (EVD) and singular value 
decomposition (SVD) have found extensive applications in 
modem digital signal processing. High resolution spectral 
estimation techniques, such as the Pisarenko's method [68], 
high resolution array processing algorithms such as the M- 
IJltiple SIgnal Classification (MUSIC) method [7 I ] ,  all re- 
quire the computation of the eigenvalue decomposition or 
the singular value decomposition of the spatial covariance 
matrix of array inputs. 

Given a p x q  real matrix A, its singular value decomposi- 
tion has the form: 

(37) 

where U and V are, respectively, p x r  ( r  < min (p,q)) and 
rxq orthonormal matrices satisfying U'U = V'V = Zr. C = diag 

A13 A14 1 
A23 A24 - -* 8 Propagate 

A l l  A12 

exchange 

' A51 A52 

L- 

. ~~ _ _ _ _ _ _ _ _ _ _ ~  ~~ - 
16 Two dirnen5ronal CORDlCproceywr array for SVD and EVD 
[IOI. 

[GI, . . ., o r ]  is a rxr  diagonal matrix containing the r singular 
values ( ~ i ;  i = 1 to r}. By definition, we have Gi > 0, 
I < i l r .  

When A is a p x p  real, symmetric square matrix. it admits 
an eigenvalue decomposition of the form: 

r 

A = EAE' = hiviv: 
;= 1 

where E is a p x p  orthonormal matrix such that E E' = E' E = 
Zp. A= diag[hi, . . ., $1 contains the p real eigenvalues. 

Sequential algorithms for EVD and SVD has been well 
developed and ready to run Fortran routines can be found in 
public domain packages such as EISPAK [73], or LINPAK 
[29]. A number of efforts have also been made to map these 
sequential algorithms to a systolic array for parallel, pipelined 

processing [7],  [lo], [18], [39]. For real-valued matrices, a 
CORDIC processor can be applied to efficiently compute 
both singular value and eigenvalue decompositions. 

Basically, a given matrix is diagonalized by pre- and 
post-multiplying with a sequence of unitary transformations. 
In other words, SVD and EVD can be accomplished with a 
sequence of row and column operations. Thus, a CORDIC 
processor array is very suitable for the implementation of 
SVD or EVD of real-valued matrices. 

Below, we present an approach based on the classical 
Jacobi method [83]. This method was proposed by Brent and 
Luk [7],  and later implemented by Delosme [ 181, Cavallaro 
[ IO]  using CORDIC processor arrays. The Brent-Luk method 
is applicable both for SVD and EVD (symmetric matrix only) 
of real, square matrices. In the following discussion of this 
algorithm, we shall assume the A matrix is asymmetric, and 
comment on the changes need to be made when A become 
symmetric. 

For convenience, we shall assume the dimension of the A 
matrix p is an even number (if this is not the case, we simply 
append the A matrix with one row and one column of 0s so 
that it has even dimension). 

We will partition the A matrix into 2 x 2 blocks. For each 
of these pL2 blocks along the diagonal of the A matrix, the 
following 2 x 2 two-sided rotation operation can be per- 
formed to nullify the two off-diagonal elements simul- 
taneously: 

In Eq. (39), the left and right rotation angles, 01 and 0,  can be 
solved from the following two equations: 

1 c + h  
a - d  €4 + 0, = tan- 

In symmetric eigenvalue computation problems, b = c on 
each diagonal block. Hence, Eqs. 40a and 40b reduce to: 

Each 81 computed in the ith diagonal block will be propagated 

to all the blocks in the ith row. Each 0r computed will be 

propagated to all the blocks in the i fh  column. Thus, the ij 
off-diagonal block will receive 01 from the irh diagonal block, 
and 9, from the j f h  diagonal block. After every block has 
completed this two-side CORDIC iteration, every pair of the 
2ifh and the 2i+lth column, as well as the rows, will be 
interchanged. This enables the beginning of the next iteration. 

Obviously, the two-sided rotation is very suitable for 

32 

. 

IEEE SIGNAL PROCESSING MAGAZINE JULY 1992 

Authorized licensed use limited to: Hong Kong University of Science and Technology. Downloaded on April 19,2010 at 02:55:58 UTC from IEEE Xplore.  Restrictions apply. 



CORDIC implementation [IO]. Figure 16 shows a 3 x 3 
CORDIC processor array for implementing this algorithm for 
a 6 x 6 matrix. Using the two-sided rotation method, the 
scaling operation can be significantly simplified: since two 
CORDIC operations are performed at a time, the scaling 
factor will become: 

t7- 1 n- 1 
1 1 1 a = n + 2-2“( I ,i) = “1.22 

r=O i d  

N o w , i f J = (  l , 3 , 5  ,..., [:]-l], 

t i -  I 

2 - 2 j 1 . n  [ 1 + 2-2i ] = 1 + 0(2Xn-’) 
j e  J i d  

where 0(2-n-1) are terms which are smaller than 2?. Assum- 
ing the register length is also n bits, these terms will not affect 
the accuracy of the result. Hence, up to n-bit accuracy, we 
have l/K:(n) = n[ 1 - 2-2j]. In other words, for every two 

CORDIC operations(1eft and right), approximately n/4 addi- 
tional iterations are used for scaling. Thus the savings is 
significant. 

In the original formulation, as seen in Eqs. 40a and 40b, 
the rotation angles Or + Or and Or - 01 must be computed 
explicitly using Eq. 4 in order to compute Or and Or. Thus, the 
double pipelining technique is not applicable. Delosme [ I  81 
has proposed some modifications to enable the use of double 
pipelining. 

0 

CONCLUSION 

In this article, we presented the basic CORDIC algorithm, 
and a partial list of potential applications of a CORDIC-based 
processor array to digital signal processing. Due to space 
limitations, many exciting on-going research projects could 
only be broadly addressed in the discussion. Details such as 
QR least square adaptive filters [ 151, and on-linear implemen- 
tation of CORDIC algorithms [30], for example, have been 
left out. We hope that this article stimulates further interest in 
the development of CORDIC-based digital signal processing 
algorithms and CORDIC-based special purpose array proces- 
sors. 
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