

5-8
Publication# 90009 Rev. A Amendment /0

Issue Date: February 1996

PLD Design Basics

INTRODUCTION
This section is intended as a beginner’s introduction to
PLD design, although experienced users may find it a
good review. We will take a step-by-step approach
through two very simple designs to demonstrate the
basic PLD design implementation process. Through this
effort, you will be introduced to the concept of device
programming.

By “beginner,” we mean a logic designer who is just
beginning to use programmable logic. You may have a
lot of experience with discrete digital logic, or you may
have just graduated from college. We assume a basic
understanding of digital logic. Some computer
experience is helpful, but not essential.

We will take no significant shortcuts for these examples,
even though there may be times when we could. In this
way, you can gain a better understanding of exactly
what is happening as you implement your design.

We will talk about device programming, describing all of
the steps that are necessary to program a PLD.
However, due to the wide variety of programmers
available, we will not get down to the level of detail that
tells you exactly which buttons to push. Although we will
get as close as we can, we must defer the details to your
programmer manual.

Constructing a Combinatorial
Design—Basic Gates
The first example we will try is a very simple
combinatorial circuit consisting of all of the basic logic
gates, as shown in Figure 1. This will be helpful for those
designs where you are integrating random logic into a
PAL device to save space and money.

As can be seen from the figure, there will be six separate
functions involving a total of twelve inputs. It is important
to bear in mind that programmable logic provides a
convenient means of implementing designs. With a real
design, some work would be required before this point to
conceptualize the design, but due to the simplicity of
these circuits, we are already in a position to start the
implementation.

A

C
D

F
G

I

M
N

J

P
Q

K

B

E

H

L

O

R

90009A-1

 Figure 1. The Basic Logic Gates

Building the Equations
We will start by generating Boolean equations. The first
function to be generated is an inverter. This is specified
according to Figure 1 as:

B = /A

Here the “equal” sign (=) is used to assign a function to
output B. The slash (/) is used to indicate negation.
Thus, this equation may be read:

B is TRUE if NOT A is TRUE

The next function is a simple AND gate. As shown in
Figure 1, we can write:

E = C*D

Here we use the “equal” sign again, but this time we
have introduced the asterisk (*) to indicate the AND
operation. This equation may be read:

E is TRUE if C AND D are TRUE

AMD

5-9PLD Design Basics

The third function is an OR gate, which may be written:

H = F + G

The “plus” sign (+) is used to specify the OR operation
here. Because of the sum-of-products nature of logic as
implemented in PLDs, it is often easy to place product
terms on separate lines, which improves the readability.
We may rewrite this equation as:

H = F
 + G

This equation may be read:

H is TRUE if F OR G is TRUE

For the moment, we will assume that we have
active-HIGH outputs on our device. The functions we
have generated so far have essentially been
active-HlGH functions. At times we wish to generate
active-LOW functions; the next two functions are
active-LOW functions that we wish to implement in an
active-HlGH device.

When we talk in terms of an active-HlGH or an
active-LOW device, the real question is whether there is
an extra inverter at the output. An active-HlGH device
has an AND-OR structure; an active-LOW device has
an AND-OR-INVERT structure which inverts the
function at the output (see Figure 2).

a. AND-OR Structure

b. AND-OR-INVERT Structure
90009A-2

Figure 2. Active HIGH vs. Active LOW

NAND and NOR gates could be generated very simply
in an active-LOW device, because we would just have to
generate AND and OR functions, and let the output
inverter generate their complements. However, given
that we wish to implement these functions in an
active-HlGH device, we must invoke DeMorgan’s
theorem, as follows:

/(X * Y) = /X + /Y
/(X + Y) = /X * /Y

We may generate our NAND function by writing:

L = / (I * J * K)

or, if preferred,

L = /I
 + /J
 + /K

Likewise the NOR function may be specified as:

O = /(M
 + N)

or

O = /M * /N

Finally, an exclusive-OR (XOR) gate may be specified
either as:

R = P :+: Q

where :+: represents the XOR operation, or more
explicitly as:

R = P * /Q
 + /P * Q

We have now specified all of the functions in terms of
their Boolean equations. The equations are
summarized in Figure 3.

B = /A ; inverter

E = C * D ; AND gate

H = F ; OR gate
 + G

L = /I ; NAND gate
 + /J
 + /K

O = /M * /N ; NOR gate

R = P * /Q ; XOR gate
 + /P * Q

Figure 3. Basic Gates Equations

AMD

5-10 PLD Design Basics

Understanding the Logic Diagram
A portion of a logic diagram is shown in Figure 4.

The logic diagram shows all of the logic resources
available in a particular device. In each device, inputs
are provided in true and complement versions, as
shown in Figure 4. These drive what are often called
“input lines,” which are the vertical lines in the logic
diagram. These input lines can then be connected to
product terms. The name “product term” is really just a
fancy name for an AND gate. However, PLDs provide

very wide gates, which can be cumbersome to draw. To
save space, the product terms are drawn as horizontal
lines with a small AND gate symbol at one end to
indicate the function being performed.

Although you really do not need to be concerned with
the actual implementation of these functions inside the
PAL device, you may be curious. Figure 5 shows how
the inverter and the AND gate are implemented. An ‘X’
indicates a connection. A product term that is not used is
indicated by an ‘X’ in the small AND gate.

0 1 2 3 4 5 6 7 8 9 12 13 1617 20 21 24 252627 28293031

49

50

51

48

8

13

12

9 11

Input Lines

True and
Complement Inputs

90009A-3

Product
Term

Figure 4. A Portion of a Logic Diagram

AMD

5-11PLD Design Basics

A

E

C

B

D

90009A-4

Figure 5. Implementation of NOT, AND Gates

Building the Design File
Once the design has been conceptualized, the design
file must be generated.

We now know exactly what our functions are going to
be. We have twelve inputs, six outputs, and the NAND
function requires three product terms. Note that if we
had specified:

L = / (I * J * K)

instead of:

L = /I
 + /J
 + /K

for the NAND gate, it would not be as obvious how many
product terms would be needed.

We are now in a position to create the design file. The
design entry varies with the software package used.
You must consult the manuals supplied with the
software for design entry format.

Generating a JEDEC File
Once the design file has been entered, you can
assemble the design to get a JEDEC file. We have two
purposes here: to make sure there are no basic
mistakes in the file, and to generate a JEDEC file for
programming. Again, how this is done is determined by
the software.

Simulating the Gates
After you have verified that your design file is correct, it
is time to verify that the design itself is correct. This is
done by simulating the design. Simulation provides a
way for you to see whether your design is working as
you expect it to. You provide a series of commands, or
events, which are then simulated by the software. If
requested, the software can tell you if the simulation
matches what you expect, and, if not, where the
problems are.

The simulation section is the last part of the design file. It
is not required, but is invariably helpful both in
debugging the design, and in generating what can
eventually be used as a portion of a test vector
sequence.

The simulator also converts the simulation results into
test vectors, and appends the vectors to the JEDEC file.
This file can be used with programmers that provide
functional tests.

Constructing a Registered Design—
Basic Flip-Flops
Next we will do a very simple registered design: we will
be designing all of the basic flip-flop types (Figure 6). We
will conceptualize the design by reviewing briefly the
behavior of the D-type flip-flop. We will then present the
results for T, J-K, and S-R flip-flops.

AMD

5-12 PLD Design Basics

The devices we will be using in the examples only have
D-type flip-flops. Thus, we will be emulating the other
flip-flops with D-type flip-flops.

JKC

CD Q

P Q

CT Q

P Q

CJ Q

P Q

CS Q

P Q

K

R

D

CLK

CLR

DT

DC

TT

TC

JKT

SRT

SRC

T

J

K

S

R

PR 90009A-5

Figure 6. Basic Flip-Flops

Building the D-Type Flip-Flop Equations
A D-type flip-flop merely presents the input data at the
output after being clocked. Its basic transfer function
can be expressed as:

DT : = D

where we have used pins DT (D True) and D as shown in
Figure 6.

Note the use of ‘:=’ here instead of ‘=’. This indicates that
the output is registered for this equation. The difference
is illustrated in Figure 7. (PLD design syntax may vary.
Consult the appropriate language reference manual.)

b. DT = D

c. DT:= D

D QD

CLK

DT

D DT

90009A-6

Figure 7. Registered vs. Combinatorial Equations

We can also generate the complement signal (named
DC) with the statement:

DC : = /D

As shown in Figure 6, we want to add synchronous
preset and clear functions to the flip-flops. This can be
done with two input pins, called PR and CLR. To add
these functions to the true flip-flop signal, we add /CLR
to every product term and add one product term
consisting only of PR. Likewise, for the complement
functions, we add /PR to every product term, and add
one product term consisting only of CLR. With these
changes, the equations now looks like:

DT := D * /CLR
 + PR

DC := /D * /PR
 + CLR

In this way, when clearing the flip-flops, the active-HlGH
flip-flops have no product terms true, and go LOW; the
active-LOW flip-flops have the last product term true,
and will therefore go HIGH. The reverse will occur for
the preset function.

AMD

5-13PLD Design Basics

There is still one hole in this design: what happens if we
preset and clear at the same time? As it is right now,
both outputs will go HIGH. This makes no sense since
one signal is supposed to be the inverse of the other. To
rectify this, we can give the clear function priority over
the preset function. We can do this by placing /CLR on
every product term for the true flip-flop signal. The
results are shown as follows:

DT := D * /CLR
 + PR * /CLR

DC := /D * /PR
 + CLR

The same basic procedure can be applied to all of the
other flip-flops. The equations are shown in Figure 8.

EQUATIONS

;emulating all flip-flops with D-type flip-flops

DT := D * /CLR ;output is D if not clear
+ PR * /CLR ;or 1 if preset and not clear at the same time

DC := /D * /PR ;output is /D if not preset
+ CLR ;or 1 if clear

TT := T * /TT * /CLR ;go HI if toggle and not clear
+ /T * TT * /CLR ;stay HI if not toggle and not clear
+ PR * /CLR ;go HI if preset and not clear at the same time

TC := T * /TC * /PR ;go HI if toggle and not preset
+ /T * TC * /PR ;stay HI if not toggle and not preset
+ CLR go HI if clearing

JKT:= J * /JKT * /CLR ;go HI if J and not clear
+ /K * JKT * /CLR ;stay HI if not K and not clear
+ PR * /CLR ;go HI if preset and not clear at the same time

JKC:= /J * /JXC * /PR ;go HI if not J and not preset
+ K * /JKC * /PR ;stay HI if not K and not preset
+ CLR ;go HI if clear

SRT:= S * /CLR ;go HI if set and not clear
+ /R * SRT * /CLR ;stay HI if not reset and not clear
+ PR * /CLR ;go HI if preset and not clear at the same time

SRC:= R * /PR ;go HI if reset and not preset
+ /S * SRC * /PR ;stay HI if not set and not preset
+ CLR ;go HI if clear

Figure 8. Flip-Flop Equation Section

Building the Remaining Equations and
Completing the Design File
Notice that in some of the equations above, the output
signal itself shows up in the equations. This is the way in
which feedback from the flip-flop can be used to
determine the next state of the flip-flop. An equivalent
logic drawing of the TT equation is shown in Figure 9.

AMD

5-14 PLD Design Basics

D Q

CLK

CLR

T

PR

TT

TT := T* /TT * /CLR

+/T* TT * /CLR

+ PR*/CLR
90009A-7

Figure 9. Feedback in the Equation for TT

We are now in a position to complete the design file. You
must follow the instructions included with your software
package to complete the file.

Simulating the Flip-Flops
After processing the design and correcting any
mistakes, we can run the simulation.

The file can now be simulated in the same manner as
the basic gates design.

Programming a Device
After simulating the design, and verifying that it works, it
is time to program a device. There are several steps to
programming, but the exact operation of the
programmer naturally depends on the type of
programmer being used. We will be as explicit as we can
here, but you will need to refer to your programmer
manual for the specifics.

The first thing that must be done after turning the
programmer on is to select the device type. This tells the
programmer what kind of programming data to expect.
The device type is usually selected either from a menu
or by entering a device code. Your programmer manual
will have the details.

Next a JEDEC file must be downloaded. To transfer the
JEDEC file from the computer to your programmer, you
will need to provide a connection, as shown in Figure 10.

90009A-8

Figure 10. A Connector Must Be Provided
Between the Computer and the Programmer

If your programmer can perform functional tests, and
you wish for those tests to be performed, you should
download the JEDEC file containing the vectors;
otherwise, you should download the JEDEC file without
vectors.

To download data, the programmer must first be set up
to receive data. The programmer manual will tell you
how to do this.

Communication must be set up between the computer
and the programmer. Whichever communication
program is installed must be invoked. This is used to
transmit the JEDEC file to the programmer. Follow the
instructions for your program to accomplish the
next steps.

AMD

5-15PLD Design Basics

Before actually sending the data, you must verify the
correct communication protocol. Check to make sure
you know what protocol the programmer is expecting;
then set up the baud rate, data bits, stop bits, and parity,
to match the protocol.

Once the protocol has been set up the JEDEC file must
be downloaded.

Enter the name of the JEDEC file you wish to use. The
computer will then announce that it is sending the data,
and tell you when it is finished. Note that just because it
says it has finished sending data does not mean that the
data was received. Your programmer will indicate
whether or not data was received correctly.

Once the data has been received, the programmer is
ready to program a device. Place a device in the
appropriate socket, and follow the instructions for your
programmer to program the device. This procedure
programs and verifies the connections in the device,

and, if a JEDEC file containing vectors was used, will
perform a functional test.

The programmer will announce when the programming
procedure has been completed. You may then take the
device and plug it into your application.

If you have actually programmed one of the examples
that we created above, you naturally don’t have a board
into which you can plug the device. If you do have a lab
setup, you may wish to play with the devices to verify for
yourself that the devices perform just as you expected
them to.

You will find much more detail on many issues that were
not discussed in this section in the remaining sections of
this handbook. This section should have provided you
with the basic knowledge you need to understand the
remaining design examples in this book, and to start
your own designs.

